title | description |
---|---|
JMESPath Functions |
Utility |
???+ tip JMESPath is a query language for JSON used by AWS CLI, AWS Python SDK, and AWS Lambda Powertools for Python.
Built-in JMESPath{target="_blank"} Functions to easily deserialize common encoded JSON payloads in Lambda functions.
- Deserialize JSON from JSON strings, base64, and compressed data
- Use JMESPath to extract and combine data recursively
You might have events that contains encoded JSON payloads as string, base64, or even in compressed format. It is a common use case to decode and extract them partially or fully as part of your Lambda function invocation.
Lambda Powertools also have utilities like validation, idempotency, or feature flags where you might need to extract a portion of your data before using them.
???+ info Envelope is the terminology we use for the JMESPath expression to extract your JSON object from your data input.
You can use the extract_data_from_envelope
function along with any JMESPath expression{target="_blank"}.
=== "app.py"
```python hl_lines="1 7"
from aws_lambda_powertools.utilities.jmespath_utils import extract_data_from_envelope
from aws_lambda_powertools.utilities.typing import LambdaContext
def handler(event: dict, context: LambdaContext):
payload = extract_data_from_envelope(data=event, envelope="powertools_json(body)")
customer = payload.get("customerId") # now deserialized
...
```
=== "event.json"
```json
{
"body": "{\"customerId\":\"dd4649e6-2484-4993-acb8-0f9123103394\"}"
}
```
We provide built-in envelopes for popular JMESPath expressions used when looking to decode/deserialize JSON objects within AWS Lambda Event Sources.
=== "app.py"
```python hl_lines="1 7"
from aws_lambda_powertools.utilities.jmespath_utils import extract_data_from_envelope, envelopes
from aws_lambda_powertools.utilities.typing import LambdaContext
def handler(event: dict, context: LambdaContext):
payload = extract_data_from_envelope(data=event, envelope=envelopes.SNS)
customer = payload.get("customerId") # now deserialized
...
```
=== "event.json"
```json hl_lines="6"
{
"Records": [
{
"messageId": "19dd0b57-b21e-4ac1-bd88-01bbb068cb78",
"receiptHandle": "MessageReceiptHandle",
"body": "{\"customerId\":\"dd4649e6-2484-4993-acb8-0f9123103394\",\"booking\":{\"id\":\"5b2c4803-330b-42b7-811a-c68689425de1\",\"reference\":\"ySz7oA\",\"outboundFlightId\":\"20c0d2f2-56a3-4068-bf20-ff7703db552d\"},\"payment\":{\"receipt\":\"https:\/\/pay.stripe.com\/receipts\/acct_1Dvn7pF4aIiftV70\/ch_3JTC14F4aIiftV700iFq2CHB\/rcpt_K7QsrFln9FgFnzUuBIiNdkkRYGxUL0X\",\"amount\":100}}",
"attributes": {
"ApproximateReceiveCount": "1",
"SentTimestamp": "1523232000000",
"SenderId": "123456789012",
"ApproximateFirstReceiveTimestamp": "1523232000001"
},
"messageAttributes": {},
"md5OfBody": "7b270e59b47ff90a553787216d55d91d",
"eventSource": "aws:sqs",
"eventSourceARN": "arn:aws:sqs:us-east-1:123456789012:MyQueue",
"awsRegion": "us-east-1"
}
]
}
```
These are all built-in envelopes you can use along with their expression as a reference:
Envelope | JMESPath expression |
---|---|
API_GATEWAY_REST |
powertools_json(body) |
API_GATEWAY_HTTP |
API_GATEWAY_REST |
SQS |
Records[*].powertools_json(body) |
SNS |
`Records[0].Sns.Message |
EVENTBRIDGE |
detail |
CLOUDWATCH_EVENTS_SCHEDULED |
EVENTBRIDGE |
KINESIS_DATA_STREAM |
Records[*].kinesis.powertools_json(powertools_base64(data)) |
CLOUDWATCH_LOGS |
`awslogs.powertools_base64_gzip(data) |
You can use our built-in JMESPath functions within your expressions to do exactly that to decode JSON Strings, base64, and uncompress gzip data.
???+ info We use these for built-in envelopes to easily decode and unwrap events from sources like API Gateway, Kinesis, CloudWatch Logs, etc.
Use powertools_json
function to decode any JSON String anywhere a JMESPath expression is allowed.
Validation scenario
This sample will decode the value within the data
key into a valid JSON before we can validate it.
=== "powertools_json_jmespath_function.py"
```python hl_lines="9"
from aws_lambda_powertools.utilities.validation import validate
import schemas
sample_event = {
'data': '{"payload": {"message": "hello hello", "username": "blah blah"}}'
}
validate(event=sample_event, schema=schemas.INPUT, envelope="powertools_json(data)")
```
=== "schemas.py"
```python hl_lines="7 14 16 23 39 45 47 52"
--8<-- "docs/shared/validation_basic_jsonschema.py"
```
Idempotency scenario
This sample will decode the value within the body
key of an API Gateway event into a valid JSON object to ensure the Idempotency utility processes a JSON object instead of a string.
import json
from aws_lambda_powertools.utilities.idempotency import (
IdempotencyConfig, DynamoDBPersistenceLayer, idempotent
)
persistence_layer = DynamoDBPersistenceLayer(table_name="IdempotencyTable")
config = IdempotencyConfig(event_key_jmespath="powertools_json(body)")
@idempotent(config=config, persistence_store=persistence_layer)
def handler(event:APIGatewayProxyEvent, context):
body = json.loads(event['body'])
payment = create_subscription_payment(
user=body['user'],
product=body['product_id']
)
...
return {
"payment_id": payment.id,
"message": "success",
"statusCode": 200
}
Use powertools_base64
function to decode any base64 data.
This sample will decode the base64 value within the data
key, and decode the JSON string into a valid JSON before we can validate it.
=== "powertools_json_jmespath_function.py"
```python hl_lines="12"
from aws_lambda_powertools.utilities.validation import validate
import schemas
sample_event = {
"data": "eyJtZXNzYWdlIjogImhlbGxvIGhlbGxvIiwgInVzZXJuYW1lIjogImJsYWggYmxhaCJ9="
}
validate(
event=sample_event,
schema=schemas.INPUT,
envelope="powertools_json(powertools_base64(data))"
)
```
=== "schemas.py"
```python hl_lines="7 14 16 23 39 45 47 52"
--8<-- "docs/shared/validation_basic_jsonschema.py"
```
Use powertools_base64_gzip
function to decompress and decode base64 data.
This sample will decompress and decode base64 data, then use JMESPath pipeline expression to pass the result for decoding its JSON string.
=== "powertools_json_jmespath_function.py"
```python hl_lines="12"
from aws_lambda_powertools.utilities.validation import validate
import schemas
sample_event = {
"data": "H4sIACZAXl8C/52PzUrEMBhFX2UILpX8tPbHXWHqIOiq3Q1F0ubrWEiakqTWofTdTYYB0YWL2d5zvnuTFellBIOedoiyKH5M0iwnlKH7HZL6dDB6ngLDfLFYctUKjie9gHFaS/sAX1xNEq525QxwFXRGGMEkx4Th491rUZdV3YiIZ6Ljfd+lfSyAtZloacQgAkqSJCGhxM6t7cwwuUGPz4N0YKyvO6I9WDeMPMSo8Z4Ca/kJ6vMEYW5f1MX7W1lVxaG8vqX8hNFdjlc0iCBBSF4ERT/3Pl7RbMGMXF2KZMh/C+gDpNS7RRsp0OaRGzx0/t8e0jgmcczyLCWEePhni/23JWalzjdu0a3ZvgEaNLXeugEAAA=="
}
validate(
event=sample_event,
schema=schemas.INPUT,
envelope="powertools_base64_gzip(data) | powertools_json(@)"
)
```
=== "schemas.py"
```python hl_lines="7 14 16 23 39 45 47 52"
--8<-- "docs/shared/validation_basic_jsonschema.py"
```
???+ warning This should only be used for advanced use cases where you have special formats not covered by the built-in functions.
For special binary formats that you want to decode before applying JSON Schema validation, you can bring your own JMESPath function{target="_blank"} and any additional option via jmespath_options
param.
In order to keep the built-in functions from Powertools, you can subclass from PowertoolsFunctions
:
=== "custom_jmespath_function.py"
```python hl_lines="2-3 6-9 11 17"
from aws_lambda_powertools.utilities.jmespath_utils import (
PowertoolsFunctions, extract_data_from_envelope)
from jmespath.functions import signature
class CustomFunctions(PowertoolsFunctions):
@signature({'types': ['string']}) # Only decode if value is a string
def _func_special_decoder(self, s):
return my_custom_decoder_logic(s)
custom_jmespath_options = {"custom_functions": CustomFunctions()}
def handler(event, context):
# use the custom name after `_func_`
extract_data_from_envelope(data=event,
envelope="special_decoder(body)",
jmespath_options=**custom_jmespath_options)
...
```
=== "event.json"
```json
{"body": "custom_encoded_data"}
```