-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmake_discriminator_model.py
35 lines (26 loc) · 1.11 KB
/
make_discriminator_model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
import sys
import tensorflow as tf
import tf_keras
from tf_keras import layers
def make_discriminator_model():
model = tf_keras.Sequential()
model.add(layers.Conv3D(1, (1, 1, 1), strides=(1, 1, 1), padding='same', input_shape=[160,160,3, 1]))
model.add(layers.LeakyReLU(alpha=0.2))
model.add(layers.Dropout(0.3))
model.add(layers.Conv3D(30, (4, 4, 4), strides=(2, 2, 2), padding='same'))
model.add(layers.LeakyReLU(alpha=0.2))
model.add(layers.Dropout(0.3))
model.add(layers.Conv3D(60, (2, 2, 2), strides=(2, 2, 2), padding='same'))
model.add(layers.LeakyReLU(alpha=0.2))
model.add(layers.Dropout(0.3))
model.add(layers.Conv3D(120, (4, 4, 4), strides=(2, 2, 2), padding='same'))
model.add(layers.LeakyReLU(alpha=0.2))
model.add(layers.Dropout(0.3))
model.add(layers.Conv3D(240, (4, 4, 4), strides=(2, 2, 2), padding='same'))
model.add(layers.BatchNormalization())
model.add(layers.LeakyReLU(alpha=0.2))
model.add(layers.Dropout(0.3))
model.add(layers.Flatten())
model.add(layers.Dense(1))
return model
sys.modules[__name__] = make_discriminator_model