-
Notifications
You must be signed in to change notification settings - Fork 12
/
Copy pathtrain_MemFlowNet_T.py
53 lines (45 loc) · 1.99 KB
/
train_MemFlowNet_T.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
from loguru import logger as loguru_logger
import torch
import torch.multiprocessing as mp
from train_MemFlowNet import *
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--name', default='MemFlowNet_T', help="name your experiment")
parser.add_argument('--stage', help="determines which dataset to use for training")
parser.add_argument('--validation', type=str, nargs='+')
parser.add_argument('--restore_ckpt', help="restore checkpoint")
# DDP
parser.add_argument('--nodes', type=int, default=1, help='how many machines')
parser.add_argument('--gpus', type=int, default=1, help='how many GPUs in one node')
parser.add_argument('--GPU_ids', type=str, default='0')
parser.add_argument('--node_rank', type=int, default=0, help='the id of this machine')
parser.add_argument('--DDP', action='store_true', help='DDP')
parser.add_argument('--eval_only', action='store_true', default=False, help='eval only')
args = parser.parse_args()
if args.stage == 'things':
from configs.things_memflownet_t import get_cfg
elif args.stage == 'things_kitti':
from configs.things_memflownet_t_kitti import get_cfg
elif args.stage == 'sintel':
from configs.sintel_memflownet_t import get_cfg
elif args.stage == 'kitti':
from configs.kitti_memflownet_t import get_cfg
os.environ['CUDA_VISIBLE_DEVICES'] = args.GPU_ids
if args.DDP:
args.world_size = args.nodes * args.gpus
os.environ['MASTER_ADDR'] = 'localhost'
os.environ['MASTER_PORT'] = '22323'
else:
args.world_size = 1
cfg = get_cfg()
cfg.update(vars(args))
process_cfg(cfg)
if not cfg.eval_only:
loguru_logger.add(str(Path(cfg.log_dir) / 'log.txt'), encoding="utf8")
loguru_logger.info(cfg)
# initialize random seed
torch.manual_seed(1234)
torch.cuda.manual_seed_all(1234)
np.random.seed(1234)
random.seed(1234)
mp.spawn(train, nprocs=args.world_size, args=(cfg,))