-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcoverage_experiment.py
565 lines (521 loc) · 30 KB
/
coverage_experiment.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
import math
import os.path
import time
from argparse import ArgumentParser
import jax
import jax.numpy as jnp
import joblib
import numpy as np
import numpyro
from tqdm import tqdm
from model import get_positive_definite_matrix, per_example_kl_divergence, per_example_kl_divergence_gamma_exponential, \
per_example_kl_divergence_beta_binomial, logistic_regression_theta_transform, gamma_exponential_theta_transform, \
beta_binomial_theta_transform, per_example_kl_divergence_beta_bernoulli, \
per_example_kl_divergence_dirichlet_categorical_full, \
dirichlet_categorical_theta_transform_full, per_example_kl_divergence_linear_regression, \
linear_regression_theta_transform
from noise_aware_dpsgd import calculate_estimates_from_mcmc_samples, perform_mcmc_sampling, \
perform_dpsgd, calculate_hessian_and_optimal_phi_priors, perform_laplace_approximation, \
calculate_estimates_from_laplace_approximation, EXPERIMENT_NAMES
from utils import DynamicAttributes, generate_data, generate_data_exponential, generate_data_binomial, \
generate_data_bernoulli, generate_data_categorical, generate_data_linear_regression, \
generate_data_linear_regression10d
def set_default_args_logistic_regression(experiment_args):
experiment_args.random_seed = 984
experiment_args.data_random_seed = 1234
experiment_args.data_size = 10000
experiment_args.training_data_size = 5000
experiment_args.validation_data_size = 5000
experiment_args.training_iterations = 10000
experiment_args.target_epsilon = 0.25
experiment_args.target_delta = 10 ** -5
experiment_args.dpsgd_initial_mu_value = 0.0
experiment_args.dpsgd_initial_pre_transformed_covariance_value = -6.0
experiment_args.sampling_rate = 0.1
experiment_args.clipping_threshold = 2.0
experiment_args.mu_gradient_scale = 1.0
experiment_args.pre_transformed_covariance_gradient_scale = 100.0
experiment_args.dpsgd_mu_learning_rate = None
experiment_args.dpsgd_pre_transformed_covariance_learning_rate = None
experiment_args.mu_learning_rate_v = math.sqrt(2)
experiment_args.pre_cov_learning_rate_v = math.sqrt(2)
experiment_args.is_covariance_diagonal_matrix = True
experiment_args.kl_divergence_mc_integration_samples_count = 10
experiment_args.mcmc_inference_model = 'gradient_based'
experiment_args.dpsgd_per_example_loss_function = per_example_kl_divergence
experiment_args.use_mcmc_sampling = False
experiment_args.mcmc_num_warmup = 1000
experiment_args.mcmc_num_samples = 4000
experiment_args.mcmc_num_chains = 1
experiment_args.trace_burn_in_percentage = 0.2
experiment_args.mcmc_mu_normal_prior_std = 10.0
experiment_args.mcmc_covariance_normal_prior_std = 1.0
experiment_args.custom_noise_scale = None
experiment_args.inference_add_subsampling_noise = True
experiment_args.theta_transform = logistic_regression_theta_transform
experiment_args.laplace_approximation_learning_rate = 1.0
experiment_args.laplace_approximation_iterations = 100000
experiment_args.laplace_approximation_trace_averaging = True
experiment_args.laplace_approximation_trace_averaging_burn_in = 0.8
return experiment_args
def set_default_args_gamma_exponential(experiment_args):
experiment_args.random_seed = 984
experiment_args.data_random_seed = 1234
experiment_args.data_size = 10000
experiment_args.training_data_size = 5000
experiment_args.validation_data_size = 5000
experiment_args.training_iterations = 10000
experiment_args.target_epsilon = 1.0
experiment_args.target_delta = 10 ** -5
experiment_args.sampling_rate = 0.1
experiment_args.dpsgd_initial_mu_value = 0.0
experiment_args.dpsgd_initial_pre_transformed_covariance_value = -4.0
experiment_args.clipping_threshold = 2.0
experiment_args.mu_gradient_scale = 1.0
experiment_args.pre_transformed_covariance_gradient_scale = 100
experiment_args.dpsgd_mu_learning_rate = None
experiment_args.dpsgd_pre_transformed_covariance_learning_rate = None
experiment_args.mu_learning_rate_v = math.sqrt(2)
experiment_args.pre_cov_learning_rate_v = math.sqrt(2)
experiment_args.is_covariance_diagonal_matrix = True
experiment_args.kl_divergence_mc_integration_samples_count = 10
experiment_args.mcmc_inference_model = 'gradient_based'
experiment_args.dpsgd_per_example_loss_function = per_example_kl_divergence_gamma_exponential
experiment_args.use_mcmc_sampling = True
experiment_args.mcmc_num_warmup = 1000
experiment_args.mcmc_num_samples = 4000
experiment_args.mcmc_num_chains = 1
experiment_args.trace_burn_in_percentage = 0.2
experiment_args.mcmc_mu_normal_prior_std = 10.0
experiment_args.mcmc_covariance_normal_prior_std = 1.0
experiment_args.custom_noise_scale = None
experiment_args.inference_add_subsampling_noise = True
experiment_args.theta_transform = gamma_exponential_theta_transform
experiment_args.laplace_approximation_learning_rate = 1.0
experiment_args.laplace_approximation_iterations = 100000
experiment_args.laplace_approximation_trace_averaging = True
experiment_args.laplace_approximation_trace_averaging_burn_in = 0.8
return experiment_args
def set_default_args_beta_bernoulli(experiment_args):
experiment_args.random_seed = 984
experiment_args.data_random_seed = 1234
experiment_args.data_size = 10000
experiment_args.training_data_size = 5000
experiment_args.validation_data_size = 5000
experiment_args.training_iterations = 10000
experiment_args.target_epsilon = 1.0
experiment_args.target_delta = 10 ** -5
experiment_args.dpsgd_initial_mu_value = 0.0
experiment_args.dpsgd_initial_pre_transformed_covariance_value = -4.0
experiment_args.sampling_rate = 0.1
experiment_args.clipping_threshold = 2.0
experiment_args.mu_gradient_scale = 1.0
experiment_args.pre_transformed_covariance_gradient_scale = 120.0
experiment_args.dpsgd_mu_learning_rate = None
experiment_args.dpsgd_pre_transformed_covariance_learning_rate = None
experiment_args.mu_learning_rate_v = math.sqrt(2)
experiment_args.pre_cov_learning_rate_v = math.sqrt(2)
experiment_args.is_covariance_diagonal_matrix = True
experiment_args.kl_divergence_mc_integration_samples_count = 10
experiment_args.mcmc_inference_model = 'gradient_based'
experiment_args.dpsgd_per_example_loss_function = per_example_kl_divergence_beta_bernoulli
experiment_args.use_mcmc_sampling = True
experiment_args.mcmc_num_warmup = 1000
experiment_args.mcmc_num_samples = 4000
experiment_args.mcmc_num_chains = 1
experiment_args.trace_burn_in_percentage = 0.2
experiment_args.mcmc_mu_normal_prior_std = 10.0
experiment_args.mcmc_covariance_normal_prior_std = 1.0
experiment_args.custom_noise_scale = None
experiment_args.inference_add_subsampling_noise = True
experiment_args.theta_transform = beta_binomial_theta_transform
experiment_args.laplace_approximation_learning_rate = 1.0
experiment_args.laplace_approximation_iterations = 100000
experiment_args.laplace_approximation_trace_averaging = True
experiment_args.laplace_approximation_trace_averaging_burn_in = 0.8
return experiment_args
def set_default_args_beta_binomial(experiment_args):
experiment_args.random_seed = 984
experiment_args.data_random_seed = 1234
experiment_args.data_size = 10000
experiment_args.training_data_size = 5000
experiment_args.validation_data_size = 5000
experiment_args.training_iterations = 10000
experiment_args.target_epsilon = 1.0
experiment_args.target_delta = 10 ** -5
experiment_args.dpsgd_initial_mu_value = 0.0
experiment_args.dpsgd_initial_pre_transformed_covariance_value = -4.0
experiment_args.sampling_rate = 0.1
experiment_args.clipping_threshold = 50
experiment_args.mu_gradient_scale = 1.0
experiment_args.pre_transformed_covariance_gradient_scale = 5000
experiment_args.dpsgd_mu_learning_rate = None
experiment_args.dpsgd_pre_transformed_covariance_learning_rate = None
experiment_args.mu_learning_rate_v = math.sqrt(2)
experiment_args.pre_cov_learning_rate_v = math.sqrt(2)
experiment_args.is_covariance_diagonal_matrix = True
experiment_args.kl_divergence_mc_integration_samples_count = 10
experiment_args.mcmc_inference_model = 'gradient_based'
experiment_args.dpsgd_per_example_loss_function = per_example_kl_divergence_beta_binomial
experiment_args.use_mcmc_sampling = True
experiment_args.mcmc_num_warmup = 1000
experiment_args.mcmc_num_samples = 4000
experiment_args.mcmc_num_chains = 1
experiment_args.trace_burn_in_percentage = 0.2
experiment_args.mcmc_mu_normal_prior_std = 10.0
experiment_args.mcmc_covariance_normal_prior_std = 1.0
experiment_args.custom_noise_scale = None
experiment_args.inference_add_subsampling_noise = True
experiment_args.theta_transform = beta_binomial_theta_transform
experiment_args.laplace_approximation_learning_rate = 1.0
experiment_args.laplace_approximation_iterations = 100000
experiment_args.laplace_approximation_trace_averaging = True
experiment_args.laplace_approximation_trace_averaging_burn_in = 0.8
return experiment_args
def set_default_args_dirichlet_categorical(experiment_args):
experiment_args.random_seed = 984
experiment_args.data_random_seed = 1234
experiment_args.data_size = 10000
experiment_args.training_data_size = 5000
experiment_args.validation_data_size = 5000
experiment_args.training_iterations = 10000
experiment_args.target_epsilon = 1.0
experiment_args.target_delta = 10 ** -5
experiment_args.dpsgd_initial_mu_value = 0.0
experiment_args.dpsgd_initial_pre_transformed_covariance_value = -6.0
experiment_args.sampling_rate = 0.1
experiment_args.clipping_threshold = math.sqrt(2)
experiment_args.mu_gradient_scale = 1.0
experiment_args.pre_transformed_covariance_gradient_scale = 100.0
experiment_args.dpsgd_mu_learning_rate = None
experiment_args.dpsgd_pre_transformed_covariance_learning_rate = None
experiment_args.mu_learning_rate_v = math.sqrt(2)
experiment_args.pre_cov_learning_rate_v = math.sqrt(2)
experiment_args.is_covariance_diagonal_matrix = True
experiment_args.kl_divergence_mc_integration_samples_count = 10
experiment_args.mcmc_inference_model = 'gradient_based'
experiment_args.dpsgd_per_example_loss_function = per_example_kl_divergence_dirichlet_categorical_full
experiment_args.use_mcmc_sampling = True
experiment_args.mcmc_num_warmup = 1000
experiment_args.mcmc_num_samples = 4000
experiment_args.mcmc_num_chains = 1
experiment_args.trace_burn_in_percentage = 0.2
experiment_args.mcmc_mu_normal_prior_std = 10.0
experiment_args.mcmc_covariance_normal_prior_std = 1.0
experiment_args.custom_noise_scale = None
experiment_args.inference_add_subsampling_noise = True
experiment_args.theta_transform = dirichlet_categorical_theta_transform_full
experiment_args.laplace_approximation_learning_rate = 1.0
experiment_args.laplace_approximation_iterations = 100000
experiment_args.laplace_approximation_trace_averaging = True
experiment_args.laplace_approximation_trace_averaging_burn_in = 0.8
return experiment_args
"""
For higher epsilon this was better: (For laplace's approximation though the default in the function was better for all epsilons)
'dpsgd_initial_mu_value': Array([ 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., -4.], dtype=float32),
'dpsgd_initial_pre_transformed_covariance_value': -6.0,
'sampling_rate': 0.1,
'clipping_threshold': 260.0,
'mu_gradient_scale': Array([1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1.], dtype=float32),
'pre_transformed_covariance_gradient_scale': Array([1500., 1500., 1500., 1500., 1500., 1500., 1500., 1500., 1500.,
1500., 1500., 1500.], dtype=float32),
'dpsgd_mu_learning_rate': None,
'dpsgd_pre_transformed_covariance_learning_rate': None,
'mu_learning_rate_v': Array([1.4142135 , 1.4142135 , 1.4142135 , 1.4142135 , 1.4142135 ,
1.4142135 , 1.4142135 , 1.4142135 , 1.4142135 , 1.4142135 ,
1.4142135 , 0.20203051], dtype=float32),
'pre_cov_learning_rate_v': 5.656854249492381,
"""
#
def set_default_args_linear_regression10d(experiment_args):
experiment_args.random_seed = 984
experiment_args.data_random_seed = 1234
experiment_args.data_size = 10000
experiment_args.training_data_size = 5000
experiment_args.validation_data_size = 5000
experiment_args.training_iterations = 10000
experiment_args.target_epsilon = 1.0
experiment_args.target_delta = 10 ** -5
experiment_args.dpsgd_initial_mu_value = jnp.concatenate(
[jnp.ones((11,), dtype=jnp.float32), jnp.array([-4.0], dtype=jnp.float32)])
experiment_args.dpsgd_initial_pre_transformed_covariance_value = -6.0
experiment_args.sampling_rate = 0.1
experiment_args.clipping_threshold = 260.0 # 260, 350, 500
experiment_args.mu_gradient_scale = jnp.concatenate(
[jnp.ones((10,), dtype=jnp.float32) * 1.0,
jnp.array([1.0, 1.0], jnp.float32)])
experiment_args.pre_transformed_covariance_gradient_scale = jnp.concatenate(
[jnp.ones((10,), dtype=jnp.float32) * 1500.0,
jnp.array([1500.0, 1500.0], jnp.float32)])
# experiment_args.pre_transformed_covariance_gradient_scale = 1000.0
experiment_args.dpsgd_mu_learning_rate = None
experiment_args.dpsgd_pre_transformed_covariance_learning_rate = None
# experiment_args.mu_learning_rate_v = jnp.concatenate([jnp.ones((10,), dtype=jnp.float32) * math.sqrt(2),
# jnp.array([math.sqrt(2), math.sqrt(2) / 14],
# jnp.float32)]) * 4
experiment_args.mu_learning_rate_v = jnp.concatenate([jnp.ones((10,), dtype=jnp.float32) * math.sqrt(2),
jnp.array([math.sqrt(2), math.sqrt(2) / 28],
jnp.float32)]) * 4
# experiment_args.pre_cov_learning_rate_v = math.sqrt(2)
# experiment_args.mu_learning_rate_v = math.sqrt(2)
experiment_args.pre_cov_learning_rate_v = math.sqrt(2) * 4
experiment_args.is_covariance_diagonal_matrix = True
experiment_args.kl_divergence_mc_integration_samples_count = 10
experiment_args.mcmc_inference_model = 'gradient_based'
experiment_args.dpsgd_per_example_loss_function = per_example_kl_divergence_linear_regression
experiment_args.use_mcmc_sampling = True
experiment_args.mcmc_num_warmup = 1000
experiment_args.mcmc_num_samples = 4000
experiment_args.mcmc_num_chains = 1
experiment_args.trace_burn_in_percentage = 0.2
experiment_args.mcmc_mu_normal_prior_std = 10.0
experiment_args.mcmc_covariance_normal_prior_std = 1.0
experiment_args.custom_noise_scale = None
experiment_args.inference_add_subsampling_noise = True
experiment_args.theta_transform = linear_regression_theta_transform
experiment_args.laplace_approximation_learning_rate = 1.0
experiment_args.laplace_approximation_iterations = 100000
experiment_args.laplace_approximation_trace_averaging = True
experiment_args.laplace_approximation_trace_averaging_burn_in = 0.8
return experiment_args
def set_default_args_linear_regression(experiment_args):
experiment_args.random_seed = 984
experiment_args.data_random_seed = 1234
experiment_args.data_size = 10000
experiment_args.training_data_size = 5000
experiment_args.validation_data_size = 5000
experiment_args.training_iterations = 10000
experiment_args.target_epsilon = 1.0
experiment_args.target_delta = 10 ** -5
experiment_args.dpsgd_initial_mu_value = jnp.concatenate(
[jnp.ones((11,), dtype=jnp.float32), jnp.array([-4.0], dtype=jnp.float32)])
experiment_args.dpsgd_initial_pre_transformed_covariance_value = -6.0
experiment_args.sampling_rate = 0.1
experiment_args.clipping_threshold = 260.0 # 260, 350, 500
experiment_args.mu_gradient_scale = jnp.concatenate(
[jnp.ones((10,), dtype=jnp.float32) * 1.0,
jnp.array([1.0, 1.0], jnp.float32)])
experiment_args.pre_transformed_covariance_gradient_scale = jnp.concatenate(
[jnp.ones((10,), dtype=jnp.float32) * 1500.0,
jnp.array([1500.0, 750.0], jnp.float32)])
# experiment_args.pre_transformed_covariance_gradient_scale = 1000.0
experiment_args.dpsgd_mu_learning_rate = None
experiment_args.dpsgd_pre_transformed_covariance_learning_rate = None
experiment_args.mu_learning_rate_v = jnp.concatenate([jnp.ones((10,), dtype=jnp.float32) * math.sqrt(2),
jnp.array([math.sqrt(2), math.sqrt(2) / 3],
jnp.float32)])
# experiment_args.pre_cov_learning_rate_v = math.sqrt(2)
# experiment_args.mu_learning_rate_v = math.sqrt(2)
experiment_args.pre_cov_learning_rate_v = math.sqrt(2) * 4
experiment_args.is_covariance_diagonal_matrix = True
experiment_args.kl_divergence_mc_integration_samples_count = 10
experiment_args.mcmc_inference_model = 'gradient_based'
experiment_args.dpsgd_per_example_loss_function = per_example_kl_divergence_linear_regression
experiment_args.use_mcmc_sampling = True
experiment_args.mcmc_num_warmup = 1000
experiment_args.mcmc_num_samples = 4000
experiment_args.mcmc_num_chains = 1
experiment_args.trace_burn_in_percentage = 0.2
experiment_args.mcmc_mu_normal_prior_std = 10.0
experiment_args.mcmc_covariance_normal_prior_std = 1.0
experiment_args.custom_noise_scale = None
experiment_args.inference_add_subsampling_noise = True
experiment_args.theta_transform = linear_regression_theta_transform
experiment_args.laplace_approximation_learning_rate = 1.0
experiment_args.laplace_approximation_iterations = 100000
experiment_args.laplace_approximation_trace_averaging = True
experiment_args.laplace_approximation_trace_averaging_burn_in = 0.8
return experiment_args
def set_linear_regression_alignment_params(experiment_args):
experiment_args.mu_gradient_scale = jnp.concatenate(
[jnp.ones((1,), dtype=jnp.float32) * 1.0,
jnp.array([1.0, 10.0], jnp.float32)])
experiment_args.pre_transformed_covariance_gradient_scale = jnp.concatenate(
[jnp.ones((1,), dtype=jnp.float32) * 1500.0,
jnp.array([1500.0, 2500.0], jnp.float32)])
return experiment_args
def set_linear_regression_alignment_params10d(experiment_args):
experiment_args.mu_gradient_scale = 1000.0
return experiment_args
def parse_program_args():
parser = ArgumentParser(fromfile_prefix_chars='@')
parser.add_argument('--target_epsilon', type=float, default=1.0, help='DP Epsilon')
parser.add_argument('--task_id', type=int, default=0, help='Task ID')
parser.add_argument('--theta_random_seed', type=int, default=666, help='Task ID')
parser.add_argument('--debug_output_directory', type=str, help='Debug Output Directory')
parser.add_argument('--output_directory', type=str, help='Output Directory')
parser.add_argument('--use_mcmc_sampling', type=bool, default=False, help='Use MCMC Sampling')
parser.add_argument('--experiment_name', type=str, default='logistic_regression',
help='One of the following: ' + ','.join(EXPERIMENT_NAMES))
program_args, _ = parser.parse_known_args()
return program_args
def perform_experiment(program_args, task_id):
experiment_args = DynamicAttributes()
experiment_name = program_args.experiment_name
experiment_args.experiment_name = experiment_name
if experiment_name == 'logistic_regression':
experiment_args = set_default_args_logistic_regression(experiment_args)
theta_true = numpyro.distributions.MultivariateNormal(jnp.zeros(3), jnp.eye(3)).sample(
key=jax.random.PRNGKey(program_args.theta_random_seed + task_id))
experiment_args.data_generator_function = generate_data
elif experiment_name == 'gamma_exponential':
experiment_args = set_default_args_gamma_exponential(experiment_args)
theta_true = numpyro.distributions.Gamma(8.0, 2.0).sample(
key=jax.random.PRNGKey(program_args.theta_random_seed + task_id),
sample_shape=(1,))
experiment_args.data_generator_function = generate_data_exponential
elif experiment_name == 'beta_bernoulli':
experiment_args = set_default_args_beta_bernoulli(experiment_args)
theta_true = numpyro.distributions.Beta(10.0, 10.0).sample(
key=jax.random.PRNGKey(program_args.theta_random_seed + task_id),
sample_shape=(1,))
experiment_args.data_generator_function = generate_data_bernoulli
elif experiment_name == 'beta_binomial':
experiment_args = set_default_args_beta_binomial(experiment_args)
theta_true = numpyro.distributions.Beta(10.0, 10.0).sample(
key=jax.random.PRNGKey(program_args.theta_random_seed + task_id),
sample_shape=(1,))
experiment_args.data_generator_function = generate_data_binomial
elif experiment_name == 'dirichlet_categorical':
experiment_args.data_generator_function = generate_data_categorical
theta_true = numpyro.distributions.Dirichlet(np.ones((3,), np.float32) * 5.0).sample(
key=jax.random.PRNGKey(program_args.theta_random_seed + task_id),
sample_shape=(1,))[0, 0:-1]
experiment_args.theta_true = theta_true
experiment_args = set_default_args_dirichlet_categorical(experiment_args)
elif experiment_name == 'linear_regression':
experiment_args.data_generator_function = generate_data_linear_regression
theta_w_prng_key, sigma_squared_prng_key = jax.random.split(
jax.random.PRNGKey(program_args.theta_random_seed + task_id))
sigma_squared = numpyro.distributions.InverseGamma(20.0, 0.5).sample(key=sigma_squared_prng_key)
dims = 2
theta_w_cov = sigma_squared * jnp.linalg.inv(jnp.eye(dims) * dims / 40.0)
theta_w = numpyro.distributions.MultivariateNormal(jnp.zeros((dims,), dtype=jnp.float32), theta_w_cov).sample(
key=theta_w_prng_key)
theta_true = jnp.concatenate([theta_w, jnp.array([sigma_squared], dtype=jnp.float32)],
axis=0)
experiment_args = set_default_args_linear_regression(experiment_args)
experiment_args.target_epsilon = program_args.target_epsilon
# experiment_args = set_linear_regression_alignment_params(experiment_args)
elif experiment_name == 'linear_regression10d':
experiment_args.data_generator_function = generate_data_linear_regression10d
theta_w_prng_key, sigma_squared_prng_key = jax.random.split(
jax.random.PRNGKey(program_args.theta_random_seed + task_id))
sigma_squared = numpyro.distributions.InverseGamma(20.0, 0.5).sample(key=sigma_squared_prng_key)
dims = 11
theta_w_cov = sigma_squared * jnp.linalg.inv(jnp.eye(dims) * (dims - 1) / 40.0)
theta_w = numpyro.distributions.MultivariateNormal(jnp.zeros((dims,), dtype=jnp.float32), theta_w_cov).sample(
key=theta_w_prng_key)
theta_true = jnp.concatenate([theta_w, jnp.array([sigma_squared], dtype=jnp.float32)],
axis=0)
experiment_args = set_default_args_linear_regression10d(experiment_args)
experiment_args.target_epsilon = program_args.target_epsilon
else:
raise ValueError('Unknown experiment name')
experiment_args.theta_random_seed = program_args.theta_random_seed
experiment_args.use_mcmc_sampling = program_args.use_mcmc_sampling
experiment_args.target_epsilon = program_args.target_epsilon
experiment_args.task_id = task_id
experiment_args.data_random_seed += task_id
experiment_args.random_seed += task_id
experiment_args.theta_true = theta_true
experiment_tracker, experiment_tracker_without_debug_info = perform_coverage_test(experiment_args)
inference_method = 'laplace'
if experiment_args.use_mcmc_sampling:
inference_method = 'mcmc'
joblib.dump(experiment_tracker,
os.path.join(program_args.debug_output_directory,
f'experiment_{experiment_name}_{inference_method}_{program_args.target_epsilon}_{program_args.task_id}.pkl'),
compress=('xz', 9))
joblib.dump(experiment_tracker_without_debug_info,
os.path.join(program_args.output_directory,
f'experiment_{experiment_name}_{inference_method}_{program_args.target_epsilon}_{program_args.task_id}.pkl'),
compress=('xz', 9))
def perform_coverage_test(experiment_args):
experiment_args.algorithm_prng_key = jax.random.PRNGKey(experiment_args.random_seed)
experiment_args.data_prng_key = jax.random.PRNGKey(experiment_args.data_random_seed)
experiment_args.xs, experiment_args.ys = experiment_args.data_generator_function(experiment_args.theta_true,
prng_key=experiment_args.data_prng_key,
N=experiment_args.data_size)
experiment_args.train_xs = experiment_args.xs[:experiment_args.training_data_size]
experiment_args.train_ys = experiment_args.ys[:experiment_args.training_data_size]
experiment_args.validation_xs = experiment_args.xs[experiment_args.training_data_size:]
experiment_args.validation_ys = experiment_args.ys[experiment_args.training_data_size:]
experiment_args.theta_dimension = experiment_args.theta_true.shape[0]
experiment_tracker = DynamicAttributes()
experiment_tracker_without_debug_info = DynamicAttributes()
experiment_tracker.experiment_args = experiment_args
experiment_tracker_without_debug_info.experiment_args = experiment_args
experiment_tracker = perform_dpsgd(experiment_args, experiment_tracker)
experiment_tracker_without_debug_info.mu_trace = experiment_tracker.mu_trace
experiment_tracker_without_debug_info.phi_trace = experiment_tracker.phi_trace
experiment_tracker_without_debug_info.dpsgd_noise_scale = experiment_tracker.dpsgd_noise_scale
experiment_tracker = calculate_hessian_and_optimal_phi_priors(experiment_args, experiment_tracker)
inference_time = time.time()
if experiment_args.use_mcmc_sampling:
experiment_tracker = perform_mcmc_sampling(experiment_args, experiment_tracker)
else:
experiment_tracker = perform_laplace_approximation(experiment_args, experiment_tracker)
inference_time = time.time() - inference_time
experiment_tracker.inference_time = inference_time
experiment_tracker_without_debug_info.inference_time = inference_time
if experiment_args.use_mcmc_sampling:
(experiment_tracker.estimated_mu,
experiment_tracker.estimated_covariance,
experiment_tracker.mu_sample_covariance,
experiment_tracker.mean_covariance,
experiment_tracker.covariance_optimal_phi_trace) = calculate_estimates_from_mcmc_samples(
experiment_tracker.optimal_phi_samples,
experiment_args.is_covariance_diagonal_matrix,
experiment_args.theta_dimension
)
experiment_tracker_without_debug_info.optimal_phi_samples = experiment_tracker.optimal_phi_samples
experiment_tracker_without_debug_info.estimated_mu = experiment_tracker.estimated_mu
experiment_tracker_without_debug_info.estimated_covariance = experiment_tracker.estimated_covariance
else:
experiment_tracker.estimated_mu, experiment_tracker.estimated_covariance = calculate_estimates_from_laplace_approximation(
experiment_tracker.laplace_approximation_posterior_mode,
experiment_tracker.laplace_approximation_posterior_covariance,
experiment_args.theta_dimension)
experiment_tracker_without_debug_info.estimated_mu = experiment_tracker.estimated_mu
experiment_tracker_without_debug_info.estimated_covariance = experiment_tracker.estimated_covariance
experiment_tracker.theta_stds = jnp.sqrt(jnp.diagonal(experiment_tracker.estimated_covariance))
experiment_tracker.theta_means = experiment_tracker.estimated_mu
experiment_tracker_without_debug_info.theta_stds = experiment_tracker.theta_stds
experiment_tracker_without_debug_info.theta_means = experiment_tracker.theta_means
if experiment_args.use_mcmc_sampling:
theta_dimension = experiment_args.theta_dimension
covariance_optimal_phi_samples = np.zeros((experiment_tracker.optimal_phi_samples.shape[0], theta_dimension),
np.float32)
for i in range(experiment_tracker.optimal_phi_samples.shape[0]):
covariance_optimal_phi_samples[i] = np.sqrt(np.diagonal(get_positive_definite_matrix(
experiment_tracker.optimal_phi_samples[i, theta_dimension:],
theta_dimension,
True)))
experiment_tracker.covariance_optimal_phi_samples = covariance_optimal_phi_samples
experiment_tracker_without_debug_info.covariance_optimal_phi_samples = covariance_optimal_phi_samples
return experiment_tracker, experiment_tracker_without_debug_info
def local_main():
program_args = DynamicAttributes()
program_args.target_epsilon = 0.1
program_args.theta_random_seed = 666
program_args.debug_output_directory = './temp/output-debug'
if not os.path.isdir(program_args.debug_output_directory):
os.makedirs(program_args.debug_output_directory)
program_args.output_directory = './temp/output'
if not os.path.isdir(program_args.output_directory):
os.makedirs(program_args.output_directory)
program_args.use_mcmc_sampling = False
program_args.experiment_name = 'linear_regression10d'
progress_bar = tqdm(total=20)
for task_id in range(1, 21):
program_args.task_id = task_id
perform_experiment(program_args, task_id)
progress_bar.update()
progress_bar.close()
def main():
program_args = parse_program_args()
task_id = program_args.task_id
perform_experiment(program_args, task_id)
if __name__ == '__main__':
main()