-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathhp_optim.py
132 lines (125 loc) · 5.19 KB
/
hp_optim.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
import os; os.environ["TF_CPP_MIN_LOG_LEVEL"]="2"
import numpy as np
import pandas as pd
import tensorflow as tf
import random
import argparse
import json
from tensorflow.keras.optimizers import Adam
from tensorflow.keras.layers import Dense, Dropout
from tensorflow.keras.models import Sequential
from tensorflow.keras.callbacks import EarlyStopping
from tensorflow.keras.initializers import RandomNormal
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler
import keras_tuner as kt
datasets = {
'yacht': 'yacht',
'boston': 'bostonHousing',
'energy': 'energy',
'concrete': 'concrete',
'wine': 'wine-quality-red',
'kin8nm': 'kin8nm',
'power-plant': 'power-plant',
'naval': 'naval-propulsion-plant',
'protein': 'protein-tertiary-structure',
'song-year': 'YearPredictionMSD'
}
def load(dataset):
path = f"data/regression/{datasets[dataset]}.txt"
if dataset == 'song-year':
data = pd.read_csv(path, header=None)
x, y = data.iloc[:,1:].values, data.iloc[:,0].values.reshape(-1, 1)
else:
data = np.loadtxt(path)
x, y = data[:,:-1], data[:,-1].reshape(-1, 1)
return x, y
def reset_seeds(seed):
random.seed(seed)
np.random.seed(seed)
tf.random.set_seed(seed)
def hp_model(hp, n_hidden):
# Hyperparameters
learning_rate = hp.Choice('learning_rate', [1e-2, 1e-3, 1e-4], default=1e-3)
decay = hp.Choice('decay', [0., 1e-3, 1e-2, 1e-1, 1.], default=1e-3)
sigma = hp.Float('sigma', min_value=1e-3, max_value=1.0, step=0.2)
dropout_rate = hp.Choice('dropout_rate', [0., 0.1, 0.25, 0.5, 0.75], default=0.)
# Build model
model = Sequential()
model.add(Dense(n_hidden,
activation='relu',
kernel_initializer=RandomNormal(stddev = sigma)))
model.add(Dropout(dropout_rate))
model.add(Dense(1,
activation='linear',
kernel_initializer=RandomNormal(stddev = sigma)))
# Compile model
optimizer = Adam(learning_rate = learning_rate, weight_decay = decay)
model.compile(optimizer=optimizer, loss='mse', metrics=['mse'])
return model
def best_model(hp_best, n_hidden):
# Build model
model = Sequential()
model.add(Dense(n_hidden,
activation='relu',
kernel_initializer=RandomNormal(stddev = hp_best['sigma'])))
model.add(Dropout(hp_best['dropout_rate']))
model.add(Dense(1,
activation='linear',
kernel_initializer=RandomNormal(stddev = hp_best['sigma'])))
# Compile model
optimizer = Adam(learning_rate = hp_best['learning_rate'], weight_decay = hp_best['decay'])
model.compile(optimizer=optimizer, loss='mse')
return model
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--dataset', type=str, default='boston', help='dataset to use')
parser.add_argument('--project', type=str, default='models', help='name of the experiment')
parser.add_argument('--seed', type=int, default=3, help='seed for random number generators')
parser.add_argument('--n_epochs', type=int, default=2000, help='maximum number of epochs to train')
parser.add_argument('--batch_size', type=int, default=64, help='batch size used for training')
parser.add_argument('--verbose', type=int, default=0, help='verbosity of the hyperparameter search, in [0,1,2]')
args = parser.parse_args()
reset_seeds(args.seed)
# Load data
x_al, y_al = load(args.dataset)
# Randomly choose train and test set
x_tr, x_te, y_tr, y_te = train_test_split(x_al, y_al,
test_size=0.1, random_state=args.seed)
# test_size=0.1, random_state=args.seed)
# Randomly choose validation set from 20% of previous training set
x_tr, x_va, y_tr, y_va = train_test_split(x_tr, y_tr,
test_size=0.2, random_state=args.seed)
# Standardize the data
s_tr_x = StandardScaler().fit(x_tr)
s_tr_y = StandardScaler().fit(y_tr)
x_tr = s_tr_x.transform(x_tr)
x_va = s_tr_x.transform(x_va)
x_te = s_tr_x.transform(x_te)
y_tr = s_tr_y.transform(y_tr)
y_va = s_tr_y.transform(y_va)
y_te = s_tr_y.transform(y_te)
# Number of hidden units per dataset
n_hidden = 100 if args.dataset in ['protein, song-year'] else 50
# Optimize hyperparameters
tuner = kt.Hyperband(
lambda hp: hp_model(hp, n_hidden),
objective = 'val_mse',
max_epochs = args.n_epochs,
seed = args.seed,
directory = args.project,
project_name = args.dataset
)
es = EarlyStopping(monitor='val_loss', mode='min', patience=5)
_ = tuner.search(x_tr, y_tr,
epochs = args.n_epochs,
batch_size = args.batch_size,
validation_data = (x_va, y_va),
callbacks = [es],
verbose = args.verbose
)
print('Summary of results:')
tuner.results_summary()
best_hp = tuner.get_best_hyperparameters()[0].values
with open(f'{args.project}/{args.dataset}/best_hp.json', 'w') as jsonfile:
json.dump(best_hp, jsonfile, indent=4)