-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain_dc_v1.py
519 lines (407 loc) · 18.4 KB
/
train_dc_v1.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
#https://www.kaggle.com/alvaroma/dcgan-lb-30-65
# import
import os
import scipy.misc
import numpy as np # linear algebra
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
import matplotlib.pyplot as plt
import matplotlib.animation as animation
import matplotlib.image as mpimg
#%matplotlib inline
import numpy as np
import torch
from torch import nn, optim
from torch import autograd
import torch.nn.functional as F
from torch.nn import Parameter
from torchvision import datasets, transforms
from torchvision.utils import save_image
from torch.utils.data import Dataset,DataLoader,Subset
from PIL import Image,ImageOps,ImageEnhance
import torchvision.utils as vutils
import torch.backends.cudnn as cudnn
import cv2
import albumentations as A
from albumentations.pytorch import ToTensor
import glob
import xml.etree.ElementTree as ET #for parsing XML
import shutil
from tqdm import tqdm
import time
import random
import pytz
from datetime import datetime
tz = pytz.timezone('Asia/Saigon')
import sys
from evaluation_script.client.mifid_demo import MIFID
from glob import glob
manualSeed = random.randint(1, 10000) # fix seed
print("Random Seed: ", manualSeed)
random.seed(manualSeed)
np.random.seed(manualSeed)
torch.manual_seed(manualSeed)
cudnn.benchmark = True
# config
class Config():
LIMIT_DATA = -1
MODEL_NAME = 'dc_v1'
LOG = 'log_{}.txt'.format(MODEL_NAME)
DEVICE = torch.device("cuda" if torch.cuda.is_available() else "cpu")
NGPU = 1
IMAGE_SIZE = 128
MEAN1,MEAN2,MEAN3 = 0.5, 0.5, 0.5
STD1,STD2,STD3 = 0.5, 0.5, 0.5
EVAL_STEP = 1 # should be 1
BATCH_SIZE = 64
NUM_WORKERS = 4
EPOCHES = 500
LR_G = 0.0002
LR_D = 0.0004
BETA1 = 0.0
BETA2 = 0.9
LRFACTOR_G = 0.9
LRFACTOR_D = 0.9
NC = 3 # Number of channels in the training images. For color images this is 3
NZ = 100 # Size of z latent vector (i.e. size of generator input)
NGF = 64 # Size of feature maps in generator
NDF = 64 # Size of feature maps in discriminator
REAL_LABEL = 0.9
FAKE_LABEL = 0.0
PATH_PRETRAINED_G = ''
PATH_PRETRAINED_D = ''
DIR_IMAGES_INPUT = '/data/cuong/data/motobike_gen/motobike/'
PATH_IMAGES_OUTPUT = '/data/cuong/result/motobike/{}/'.format(MODEL_NAME)
INTRUDERS = [
'2019_08_05_05_17_32_B0xS_6hHgXG_66398352_483445189138958_8195470045202604419_n_1568719912383_18787.jpg', #
'22_honda_20Blade_20_3__1568719132927_7959.jpg', #cannot write mode CMYK as PNG
'50_1_1547807271_1568719515097_13285.jpg',#cannot write mode CMYK as PNG
'83_6060897e2b1d5627435b1bec2e5a9ac2_1568719487112_12907.jpg',#cannot write mode CMYK as PNG
'94_banner_tskt_1568719223567_9195.jpg',#cannot write mode CMYK as PNG
'Motorel38d6l1smallMotor.jpg', # truncated
]
# utilities
def printBoth(filename, args):
date_time = datetime.now(tz).strftime('%Y-%m-%d %H:%M:%S ')
# write log
fo = open(filename, "a")
fo.write(date_time + args+'\n')
fo.close()
# print
print(date_time + args)
def clean_dir(directory):
if os.path.exists(directory):
shutil.rmtree(directory)
os.makedirs(directory)
def generate_img(netG,fixed_noise,fixed_aux_labels=None):
if fixed_aux_labels is not None:
gen_image = netG(fixed_noise,fixed_aux_labels).to('cpu').clone().detach().squeeze(0)
else:
gen_image = netG(fixed_noise).to('cpu').clone().detach().squeeze(0)
#denormalize
gen_image = gen_image*0.5 + 0.5
gen_image_numpy = gen_image.numpy().transpose(0,2,3,1)
return gen_image_numpy
def show_generate_imgs(netG,fixed_noise,fixed_aux_labels=None):
gen_images_numpy = generate_img(netG,fixed_noise,fixed_aux_labels)
fig = plt.figure(figsize=(25, 16))
# display 10 images from each class
for i, img in enumerate(gen_images_numpy):
ax = fig.add_subplot(4, 8, i + 1, xticks=[], yticks=[])
plt.imshow(img)
plt.show()
plt.close()
def evaluate_dataset(dir_dataset, mifid):
img_paths = glob(os.path.join(dir_dataset,'*.*'))
img_np = np.empty((len(img_paths), 128, 128, 3), dtype=np.uint8)
for idx, path in tqdm(enumerate(img_paths)):
img_arr = cv2.imread(path)[..., ::-1]
img_arr = np.array(img_arr)
img_np[idx] = img_arr
score = mifid.compute_mifid(img_np)
#print('dir_dataset={}; FID={}'.format(dir_dataset, score))
return score
def validate_images_gen(netG, fixed_noise, dir_output):
gen_images = netG(fixed_noise).to('cpu').clone().detach().squeeze(0)
gen_images = gen_images*0.5 + 0.5
for i in range(gen_images.size(0)):
save_image(gen_images[i, :, :, :], os.path.join(dir_output, '{}.png'.format(i)))
# dataloader
class MotobikeDataset(Dataset):
def __init__(self, path, img_list, transform1=None, transform2=None):
self.path = path
self.img_list = img_list
self.transform1 = transform1
self.transform2 = transform2
self.imgs = []
self.labels = []
for i,img_name in enumerate(self.img_list):
if img_name in Config.INTRUDERS:
continue
# load image
img_path = os.path.join(self.path, img_name)
img = Image.open(img_path).convert('RGB')
# apply transform
if self.transform1:
img = self.transform1(img) #output shape=(ch,h,w)
if self.transform2:
img = self.transform2(img)
self.imgs.append(img)
def __len__(self):
return len(self.imgs)
def __getitem__(self,idx):
img = self.imgs[idx]
return {'img':img}
# model
def weights_init(m):
classname = m.__class__.__name__
if classname.find('Conv') != -1:
nn.init.normal_(m.weight.data, 0.0, 0.02)
elif classname.find('BatchNorm') != -1:
nn.init.normal_(m.weight.data, 1.0, 0.02)
nn.init.constant_(m.bias.data, 0)
class Generator(nn.Module):
def __init__(self, ngpu):
super(Generator, self).__init__()
self.ngpu = ngpu
self.main = nn.Sequential(
# input is Z, going into a convolution
nn.ConvTranspose2d( Config.NZ, Config.NGF * 16, 4, 1, 0, bias=False),
nn.BatchNorm2d(Config.NGF * 16),
nn.LeakyReLU(0.1, inplace=True),
#nn.ReLU(True),
# state size. (ngf*16) x 4 x 4
nn.ConvTranspose2d( Config.NGF * 16, Config.NGF * 8, 4, 2, 1, bias=False),
nn.BatchNorm2d(Config.NGF * 8),
nn.LeakyReLU(0.1, inplace=True),
#nn.ReLU(True),
# state size. (ngf*8) x 8 x 8
nn.ConvTranspose2d(Config.NGF * 8, Config.NGF * 4, 4, 2, 1, bias=False),
nn.BatchNorm2d(Config.NGF * 4),
nn.LeakyReLU(0.1, inplace=True),
#nn.ReLU(True),
# state size. (ngf*4) x 16 x 16
nn.ConvTranspose2d( Config.NGF * 4, Config.NGF * 2, 4, 2, 1, bias=False),
nn.BatchNorm2d(Config.NGF * 2),
nn.LeakyReLU(0.1, inplace=True),
#nn.ReLU(True),
# state size. (ngf*2) x 32 x 32
nn.ConvTranspose2d( Config.NGF * 2, Config.NGF, 4, 2, 1, bias=False),
nn.BatchNorm2d(Config.NGF),
nn.LeakyReLU(0.1, inplace=True),
#nn.ReLU(True),
# state size. (ngf) x 64 x 64
nn.ConvTranspose2d( Config.NGF, Config.NC, 4, 2, 1, bias=False),
nn.Tanh()
# state size. (nc) x 128 x 128
)
def forward(self, input):
return self.main(input)
class Discriminator(nn.Module):
def __init__(self, ngpu):
super(Discriminator, self).__init__()
self.ngpu = ngpu
self.main = nn.Sequential(
# input is (nc) x 128 x 128
nn.Conv2d(Config.NC, Config.NDF, 4, 2, 1, bias=False),
nn.BatchNorm2d(Config.NDF),
nn.LeakyReLU(0.1, inplace=True),
# state size. (ndf) x 64 x 64
nn.Conv2d(Config.NDF, Config.NDF * 2, 4, 2, 1, bias=False),
nn.BatchNorm2d(Config.NDF * 2),
nn.LeakyReLU(0.1, inplace=True),
# state size. (ndf*2) x 32 x 32
nn.Conv2d(Config.NDF * 2, Config.NDF * 4, 4, 2, 1, bias=False),
nn.BatchNorm2d(Config.NDF * 4),
nn.LeakyReLU(0.1, inplace=True),
# state size. (ndf*4) x 16 x 16
nn.Conv2d(Config.NDF * 4, Config.NDF * 8, 4, 2, 1, bias=False),
nn.BatchNorm2d(Config.NDF * 8),
nn.LeakyReLU(0.1, inplace=True),
# state size. (ndf*8) x 8 x 8
nn.Conv2d(Config.NDF * 8, Config.NDF * 16, 4, 2, 1, bias=False),
nn.BatchNorm2d(Config.NDF * 16),
nn.LeakyReLU(0.1, inplace=True),
# state size. (ndf*8) x 8 x 8
nn.Conv2d(Config.NDF * 16, 1, 4, 1, 0, bias=False),
nn.Sigmoid()
)
def forward(self, input):
return self.main(input)
def count_parameters(model):
return sum(p.numel() for p in model.parameters() if p.requires_grad)
def print_params():
printBoth(Config.LOG, 'MODEL_NAME={}'.format(Config.MODEL_NAME))
printBoth(Config.LOG, 'LOG={}'.format(Config.LOG))
printBoth(Config.LOG, 'DEVICE={}'.format(Config.DEVICE))
printBoth(Config.LOG, 'NGPU={}'.format(Config.NGPU))
printBoth(Config.LOG, 'IMAGE_SIZE={}'.format(Config.IMAGE_SIZE))
printBoth(Config.LOG, 'MEAN1={}; MEAN2={}; MEAN3={}'.format(Config.MEAN1, Config.MEAN2, Config.MEAN3))
printBoth(Config.LOG, 'STD1={}; STD2={}; STD3={};'.format(Config.STD1, Config.STD2, Config.STD3))
printBoth(Config.LOG, 'EVAL_STEP={}'.format(Config.EVAL_STEP))
printBoth(Config.LOG, 'BATCH_SIZE={}'.format(Config.BATCH_SIZE))
printBoth(Config.LOG, 'NUM_WORKERS={}'.format(Config.NUM_WORKERS))
printBoth(Config.LOG, 'EPOCHES={}'.format(Config.EPOCHES))
printBoth(Config.LOG, 'LR_G={}'.format(Config.LR_G))
printBoth(Config.LOG, 'LR_D={}'.format(Config.LR_D))
printBoth(Config.LOG, 'BETA1={}'.format(Config.BETA1))
printBoth(Config.LOG, 'BETA2={}'.format(Config.BETA2))
printBoth(Config.LOG, 'LRFACTOR_G={}'.format(Config.LRFACTOR_G))
printBoth(Config.LOG, 'LRFACTOR_D={}'.format(Config.LRFACTOR_D))
printBoth(Config.LOG, 'NC={}'.format(Config.NC))
printBoth(Config.LOG, 'NZ={}'.format(Config.NZ))
printBoth(Config.LOG, 'NGF={}'.format(Config.NGF))
printBoth(Config.LOG, 'NDF={}'.format(Config.NDF))
printBoth(Config.LOG, 'REAL_LABEL={}'.format(Config.REAL_LABEL))
printBoth(Config.LOG, 'FAKE_LABEL={}'.format(Config.FAKE_LABEL))
printBoth(Config.LOG, 'PATH_PRETRAINED_G={}'.format(Config.PATH_PRETRAINED_G))
printBoth(Config.LOG, 'PATH_PRETRAINED_D={}'.format(Config.PATH_PRETRAINED_D))
printBoth(Config.LOG, 'DIR_IMAGES_INPUT={}'.format(Config.DIR_IMAGES_INPUT))
printBoth(Config.LOG, 'PATH_IMAGES_OUTPUT={}'.format(Config.PATH_IMAGES_OUTPUT))
def create_dataloader():
# parse images
img_filenames = []
for image_name in sorted(os.listdir(Config.DIR_IMAGES_INPUT)):
if image_name not in Config.INTRUDERS:
img_filenames.append(image_name)
if (Config.LIMIT_DATA>0) and (len(img_filenames)>Config.LIMIT_DATA):
break
# create transform
transform1 = transforms.Compose([transforms.Resize(Config.IMAGE_SIZE)])
transform2 = transforms.Compose([transforms.RandomCrop(Config.IMAGE_SIZE),
#transforms.RandomAffine(degrees=5),
transforms.RandomHorizontalFlip(p=0.5),
#transforms.RandomApply(random_transforms, p=0.3),
transforms.ToTensor(),
transforms.Normalize(mean=[Config.MEAN1, Config.MEAN2, Config.MEAN3],
std=[Config.STD1, Config.STD2, Config.STD3]),
])
# create loader
printBoth(Config.LOG, 'Generating dataloader ...')
train_set = MotobikeDataset(path=Config.DIR_IMAGES_INPUT,
img_list=img_filenames,
transform1=transform1,
transform2=transform2,
)
train_loader = DataLoader(train_set,
shuffle=True,
batch_size=Config.BATCH_SIZE,
num_workers=Config.NUM_WORKERS)
printBoth(Config.LOG, 'The length of train_set = {}'.format(len(train_set)))
printBoth(Config.LOG, 'The length of dataloader = {}'.format(len(train_loader)))
return train_loader
def create_models():
# Create the generator
netG = Generator(Config.NGPU).to(Config.DEVICE)
if Config.PATH_PRETRAINED_G is not '':
netG.load_state_dict(torch.load(Config.PATH_PRETRAINED_G, map_location=Config.DEVICE))
printBoth(Config.LOG, 'Completed to load pretrained generator model')
else:
netG.apply(weights_init) #initialize all weights to mean=0, stdev=0.2.
printBoth(Config.LOG, 'Completed to create Generator model')
if (Config.DEVICE.type == 'cuda') and (Config.NGPU > 1):
netG = nn.DataParallel(netG, list(range(Config.NGPU)))
printBoth(Config.LOG, 'count_params of netG = {}'.format(count_parameters(netG)))
# Create the Discriminator
netD = Discriminator(Config.NGPU).to(Config.DEVICE)
if Config.PATH_PRETRAINED_D is not '':
netD.load_state_dict(torch.load(Config.PATH_PRETRAINED_D, map_location=Config.DEVICE))
printBoth(Config.LOG, 'Completed to load pretrained discriminator model')
else:
netD.apply(weights_init) #initialize all weights to mean=0, stdev=0.2.
printBoth(Config.LOG, 'Completed to create Discriminator model')
if (Config.DEVICE.type == 'cuda') and (Config.NGPU > 1):
netD = nn.DataParallel(netD, list(range(Config.NGPU)))
printBoth(Config.LOG, 'count_params of netD = {}'.format(count_parameters(netD)))
return netG, netD
def train(train_loader, netG, netD, mifid):
printBoth(Config.LOG, 'Start training ...')
# train
criterion = nn.BCELoss() # Initialize BCELoss function
fixed_noise = torch.randn(64, Config.NZ, 1, 1, device=Config.DEVICE) # Create batch of latent vectors that we will use to visualize
# Setup Adam optimizers for both G and D
optimizerD = optim.Adam(netD.parameters(), lr=Config.LR_D, betas=(Config.BETA1, Config.BETA2))
optimizerG = optim.Adam(netG.parameters(), lr=Config.LR_G, betas=(Config.BETA1, Config.BETA2))
schedulerG = torch.optim.lr_scheduler.LambdaLR(optimizerG, lambda epoch: Config.LRFACTOR_G ** epoch)
schedulerD = torch.optim.lr_scheduler.LambdaLR(optimizerD, lambda epoch: Config.LRFACTOR_D ** epoch)
# Lists to keep track of progress
clean_dir(Config.PATH_IMAGES_OUTPUT)
netG.train()
netD.train()
for epoch in range(Config.EPOCHES):
list_errD = []
list_errG = []
for i, data in enumerate(train_loader):
############################
# (1) Update D network: maximize log(D(x)) + log(1 - D(G(z)))
###########################
## Train with all-real batch
netD.zero_grad()
# Format batch
real_cpu = data['img'].to(Config.DEVICE)
b_size = real_cpu.size(0)
label = torch.full((b_size,), Config.REAL_LABEL, device=Config.DEVICE)
# Forward pass real batch through D
output = netD(real_cpu).view(-1)
# Calculate loss on all-real batch
errD_real = criterion(output, label)
# Calculate gradients for D in backward pass
errD_real.backward()
D_x = output.mean().item()
## Train with all-fake batch
# Generate batch of latent vectors
noise = torch.randn(b_size, Config.NZ, 1, 1, device=Config.DEVICE)
# Generate fake image batch with G
fake = netG(noise)
label.fill_(Config.FAKE_LABEL)
# Classify all fake batch with D
output = netD(fake.detach()).view(-1)
# Calculate D's loss on the all-fake batch
errD_fake = criterion(output, label)
# Calculate the gradients for this batch
errD_fake.backward()
D_G_z1 = output.mean().item()
# Add the gradients from the all-real and all-fake batches
errD = errD_real + errD_fake
# Update D
optimizerD.step()
list_errD.append(errD.item())
############################
# (2) Update G network: maximize log(D(G(z)))
###########################
netG.zero_grad()
label.fill_(Config.REAL_LABEL) # fake labels are real for generator cost
# Since we just updated D, perform another forward pass of all-fake batch through D
output = netD(fake).view(-1)
# Calculate G's loss based on this output
errG = criterion(output, label)
# Calculate gradients for G
errG.backward()
D_G_z2 = output.mean().item()
# Update G
optimizerG.step()
list_errG.append(errG.item())
# adjust learning rate
schedulerG.step()
schedulerD.step()
# save model
torch.save(netG.state_dict(), Config.PATH_IMAGES_OUTPUT + '{}_G.pth'.format(epoch))
torch.save(netD.state_dict(), Config.PATH_IMAGES_OUTPUT + '{}_D.pth'.format(epoch))
# Check how the generator is doing by saving G's output on fixed_noise
#show_generate_imgs(netG, fixed_noise)
# evaludate and save generated images
with torch.no_grad():
dir_output = Config.PATH_IMAGES_OUTPUT + str(epoch)
clean_dir(dir_output)
validate_images_gen(netG, fixed_noise, dir_output)
fdi = evaluate_dataset(dir_output, mifid)
# print
date_time = datetime.now(tz).strftime('%Y-%m-%d %H:%M:%S ')
printBoth(Config.LOG, 'epoch={}; errD={:0.5}; errG={:0.5}; fdi={:0.5}'.\
format(epoch, np.average(list_errD), np.average(list_errG), fdi))
if __name__ == '__main__':
mifid = MIFID(model_path='./evaluation_script/client/motorbike_classification_inception_net_128_v4_e36.pb',
public_feature_path='./evaluation_script/client/public_feature.npz')
print_params()
train_loader = create_dataloader()
netG, netD = create_models()
train(train_loader, netG, netD, mifid)