-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain_big_v4.py
603 lines (480 loc) · 21.3 KB
/
train_big_v4.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
import os
import numpy as np # linear algebra
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
import matplotlib.pyplot as plt
import matplotlib.image as mpimg
import numpy as np
import torch
from torch import nn, optim
from torch import autograd
import torch.nn.functional as F
from torch.nn import Parameter
from torchvision import datasets, transforms
from torchvision.utils import save_image
from torch.utils.data import Dataset,DataLoader,Subset
from PIL import Image,ImageOps,ImageEnhance
import cv2
import albumentations as A
from albumentations.pytorch import ToTensor
import glob
import xml.etree.ElementTree as ET #for parsing XML
import shutil
from tqdm import tqdm
import time
import random
from sklearn.metrics import accuracy_score
import torch.backends.cudnn as cudnn
import sys
from evaluation_script.client.mifid_demo import MIFID
from glob import glob
import pytz
from datetime import datetime
tz = pytz.timezone('Asia/Saigon')
# set params
MODEL_NAME = 'big_v4'
LOG = 'log_{}.txt'.format(MODEL_NAME)
LIMIT_DATA = -1
EPOCHS = 1000
BATCH_SIZE = 32
NUM_WORKERS = 4
NC = 3
NZ = 150
NGF = 36
NDF = 40
LR_G=0.0001
LR_D=0.0004
BETA1 = 0.0
BETA2 = 0.999
IMG_SIZE = 128
MEAN1,MEAN2,MEAN3 = 0.5, 0.5, 0.5
STD1,STD2,STD3 = 0.5, 0.5, 0.5
DIR_IMAGES_INPUT = '/data/cuong/data/motobike_gen/motobike/'
DIR_IMAGES_OUTPUT = '/data/cuong/result/motobike/{}/'.format(MODEL_NAME)
NUM_WORKERS = 8
INTRUDERS = [
'2019_08_05_05_17_32_B0xS_6hHgXG_66398352_483445189138958_8195470045202604419_n_1568719912383_18787.jpg', #
'22_honda_20Blade_20_3__1568719132927_7959.jpg', #cannot write mode CMYK as PNG
'50_1_1547807271_1568719515097_13285.jpg',#cannot write mode CMYK as PNG
'83_6060897e2b1d5627435b1bec2e5a9ac2_1568719487112_12907.jpg',#cannot write mode CMYK as PNG
'94_banner_tskt_1568719223567_9195.jpg',#cannot write mode CMYK as PNG
'Motorel38d6l1smallMotor.jpg', # truncated
'MotorbausxbbzsmallMotor.jpg', # high ratio
'Motorytec9gywsmallMotor.jpg', # high ratio
'Motortq4lbb5wsmallMotor.jpg', # outlier
'Motorjp975mnnsmallMotor.jpg', # outlier
'Motor_ho4pcmksmallMotor.jpg', # outlier
'Motor2fankuyqsmallMotor.jpg', # outlier
'Motorgk66yavfsmallMotor.jpg', # outlier
]
def clean_dir(directory):
if os.path.exists(directory):
shutil.rmtree(directory)
os.makedirs(directory)
def printBoth(filename, args):
date_time = datetime.now(tz).strftime('%Y-%m-%d %H:%M:%S ')
# write log
fo = open(filename, "a")
fo.write(date_time + args+'\n')
fo.close()
# print
print(date_time + args)
class MotobikeDataset(Dataset):
def __init__(self, path, img_list, transform1=None, transform2=None):
self.path = path
self.img_list = img_list
self.transform1 = transform1
self.transform2 = transform2
self.imgs = []
self.labels = []
for i,img_name in enumerate(self.img_list):
# load image
img_path = os.path.join(self.path, img_name)
img = Image.open(img_path).convert('RGB')
# apply transform
if self.transform1:
img = self.transform1(img) #output shape=(ch,h,w)
if self.transform2:
img = self.transform2(img)
self.imgs.append(img)
#label
label = 0 #breed_map_2[img_path.split('_')[0]]
self.labels.append(label)
def __len__(self):
return len(self.imgs)
def __getitem__(self,idx):
img = self.imgs[idx]
label = self.labels[idx]
return {'img':img, 'label':label}
def count_parameters(model):
return sum(p.numel() for p in model.parameters() if p.requires_grad)
def conv3x3(in_channel, out_channel): #not change resolusion
return nn.Conv2d(in_channel,out_channel,
kernel_size=3,stride=1,padding=1,dilation=1,bias=False)
def conv1x1(in_channel, out_channel): #not change resolution
return nn.Conv2d(in_channel,out_channel,
kernel_size=1,stride=1,padding=0,dilation=1,bias=False)
def init_weight(m):
classname = m.__class__.__name__
if classname.find('Conv') != -1:
nn.init.orthogonal_(m.weight, gain=1)
if m.bias is not None:
m.bias.data.zero_()
elif classname.find('Batch') != -1:
m.weight.data.normal_(1,0.02)
m.bias.data.zero_()
elif classname.find('Linear') != -1:
nn.init.orthogonal_(m.weight, gain=1)
if m.bias is not None:
m.bias.data.zero_()
elif classname.find('Embedding') != -1:
nn.init.orthogonal_(m.weight, gain=1)
class Attention(nn.Module):
def __init__(self, channels):
super().__init__()
self.channels = channels
self.theta = nn.utils.spectral_norm(conv1x1(channels, channels//8)).apply(init_weight)
self.phi = nn.utils.spectral_norm(conv1x1(channels, channels//8)).apply(init_weight)
self.g = nn.utils.spectral_norm(conv1x1(channels, channels//2)).apply(init_weight)
self.o = nn.utils.spectral_norm(conv1x1(channels//2, channels)).apply(init_weight)
self.gamma = nn.Parameter(torch.tensor(0.), requires_grad=True)
def forward(self, inputs):
batch,c,h,w = inputs.size()
theta = self.theta(inputs) #->(*,c/8,h,w)
phi = F.max_pool2d(self.phi(inputs), [2,2]) #->(*,c/8,h/2,w/2)
g = F.max_pool2d(self.g(inputs), [2,2]) #->(*,c/2,h/2,w/2)
theta = theta.view(batch, self.channels//8, -1) #->(*,c/8,h*w)
phi = phi.view(batch, self.channels//8, -1) #->(*,c/8,h*w/4)
g = g.view(batch, self.channels//2, -1) #->(*,c/2,h*w/4)
beta = F.softmax(torch.bmm(theta.transpose(1,2), phi), -1) #->(*,h*w,h*w/4)
o = self.o(torch.bmm(g, beta.transpose(1,2)).view(batch,self.channels//2,h,w)) #->(*,c,h,w)
return self.gamma*o + inputs
class ConditionalNorm(nn.Module):
def __init__(self, in_channel, n_condition):
super().__init__()
self.bn = nn.BatchNorm2d(in_channel, affine=False) #no learning parameters
self.embed = nn.Linear(n_condition, in_channel* 2)
nn.init.orthogonal_(self.embed.weight.data[:, :in_channel], gain=1)
self.embed.weight.data[:, in_channel:].zero_()
def forward(self, inputs, label):
out = self.bn(inputs)
embed = self.embed(label.float())
gamma, beta = embed.chunk(2, dim=1)
gamma = gamma.unsqueeze(2).unsqueeze(3)
beta = beta.unsqueeze(2).unsqueeze(3)
out = gamma * out + beta
return out
#BigGAN + leaky_relu
class ResBlock_G(nn.Module):
def __init__(self, in_channel, out_channel, condition_dim, upsample=True):
super().__init__()
self.cbn1 = ConditionalNorm(in_channel, condition_dim)
self.upsample = nn.Sequential()
if upsample:
self.upsample.add_module('upsample',nn.Upsample(scale_factor=2, mode='nearest'))
self.conv3x3_1 = nn.utils.spectral_norm(conv3x3(in_channel, out_channel)).apply(init_weight)
self.cbn2 = ConditionalNorm(out_channel, condition_dim)
self.conv3x3_2 = nn.utils.spectral_norm(conv3x3(out_channel, out_channel)).apply(init_weight)
self.conv1x1 = nn.utils.spectral_norm(conv1x1(in_channel, out_channel)).apply(init_weight)
def forward(self, inputs, condition):
x = F.leaky_relu(self.cbn1(inputs, condition))
x = self.upsample(x)
x = self.conv3x3_1(x)
x = self.conv3x3_2(F.leaky_relu(self.cbn2(x, condition)))
x += self.conv1x1(self.upsample(inputs)) #shortcut
return x
class Generator(nn.Module):
def __init__(self, n_feat, codes_dim=20):
super().__init__()
self.codes_dim = codes_dim # must be z_dim/6
self.fc = nn.Sequential(
nn.utils.spectral_norm(nn.Linear(codes_dim, 16*n_feat*4*4)).apply(init_weight)
)
self.res1 = ResBlock_G(16*n_feat, 16*n_feat, codes_dim, upsample=True)
self.res2 = ResBlock_G(16*n_feat, 8*n_feat, codes_dim, upsample=True)
#self.attn2 = Attention(8*n_feat)
self.res3 = ResBlock_G( 8*n_feat, 4*n_feat, codes_dim, upsample=True)
self.attn = Attention(4*n_feat)
self.res4 = ResBlock_G( 4*n_feat, 2*n_feat, codes_dim, upsample=True)
self.res5 = ResBlock_G( 2*n_feat, 1*n_feat, codes_dim, upsample=True)
self.conv = nn.Sequential(
#nn.BatchNorm2d(2*n_feat).apply(init_weight),
nn.LeakyReLU(),
nn.utils.spectral_norm(conv3x3(1*n_feat, NC)).apply(init_weight),
)
def forward(self, z):
'''
z.shape = (*,120)
label_ohe.shape = (*,n_classes)
'''
batch = z.size(0)
z = z.squeeze()
codes = torch.split(z, self.codes_dim, dim=1)
x = self.fc(codes[0]) #->(*,16ch*4*4)
x = x.view(batch,-1,4,4) #->(*,16ch,4,4)
condition = codes[1]
x = self.res1(x, condition)#->(*,16ch,8,8)
condition = codes[2]
x = self.res2(x, condition) #->(*,8ch,16,16)
#x = self.attn2(x) #not change shape
condition = codes[3]
x = self.res3(x, condition) #->(*,4ch,32,32)
#x = self.attn(x) #not change shape
condition = codes[4]
x = self.res4(x, condition) #->(*,2ch,64,64)
condition = codes[5]
x = self.res5(x, condition) #->(*,1ch,128,128)
x = self.conv(x) #->(*,3,128,128)
x = torch.tanh(x)
return x
class ResBlock_D(nn.Module):
def __init__(self, in_channel, out_channel, downsample=True):
super().__init__()
self.layer = nn.Sequential(
nn.LeakyReLU(0.2),
nn.utils.spectral_norm(conv3x3(in_channel, out_channel)).apply(init_weight),
nn.LeakyReLU(0.2),
nn.utils.spectral_norm(conv3x3(out_channel, out_channel)).apply(init_weight),
)
self.shortcut = nn.Sequential(
nn.utils.spectral_norm(conv1x1(in_channel,out_channel)).apply(init_weight),
)
if downsample:
self.layer.add_module('avgpool',nn.AvgPool2d(kernel_size=2,stride=2))
self.shortcut.add_module('avgpool',nn.AvgPool2d(kernel_size=2,stride=2))
def forward(self, inputs):
x = self.layer(inputs)
x += self.shortcut(inputs)
return x
class Discriminator(nn.Module):
def __init__(self, n_feat):
super().__init__()
self.res1 = ResBlock_D(NC, n_feat, downsample=True)
#self.attn = Attention(n_feat)
self.res2 = ResBlock_D(n_feat, 2*n_feat, downsample=True)
self.attn = Attention(2*n_feat)
self.res3 = ResBlock_D(2*n_feat, 4*n_feat, downsample=True)
self.res4 = ResBlock_D(4*n_feat, 8*n_feat, downsample=True)
self.res5 = ResBlock_D(8*n_feat,16*n_feat, downsample=True)
self.fc = nn.utils.spectral_norm(nn.Linear(16*n_feat,1)).apply(init_weight)
#self.embedding = nn.Embedding(num_embeddings=n_classes, embedding_dim=16*n_feat).apply(init_weight)
def forward(self, inputs):
batch = inputs.size(0) #(*,3,128,128)
h = self.res1(inputs) #->(*,ch,64,64)
h = self.res2(h) #->(*,2ch,32,32)
#h = self.attn(h) #not change shape
h = self.res3(h) #->(*,4ch,16,16)
h = self.res4(h) #->(*,8ch,8,8)
h = self.res5(h) #->(*,16ch,4,4)
h = torch.sum((F.leaky_relu(h,0.2)).view(batch,-1,4*4), dim=2) #GlobalSumPool ->(*,16ch)
outputs = self.fc(h) #->(*,1)
#if label is not None:
# embed = self.embedding(label) #->(*,16ch)
# outputs += torch.sum(embed*h,dim=1,keepdim=True) #->(*,1)
outputs = torch.sigmoid(outputs)
return outputs
#random seeds
def set_seeds():
manualSeed = random.randint(1, 10000) # fix seed
random.seed(manualSeed)
np.random.seed(manualSeed)
torch.manual_seed(manualSeed)
torch.backends.cudnn.benchmark = True
printBoth(LOG, 'manualSeed={}'.format(manualSeed))
def validate_images_gen(netG, fixed_noise, dir_output):
gen_images = netG(fixed_noise).to('cpu').clone().detach().squeeze(0)
gen_images = gen_images*0.5 + 0.5
for i in range(gen_images.size(0)):
save_image(gen_images[i, :, :, :], os.path.join(dir_output, '{}.png'.format(i)))
def evaluate_dataset(dir_dataset, mifid):
img_paths = glob(os.path.join(dir_dataset,'*.*'))
img_np = np.empty((len(img_paths), 128, 128, 3), dtype=np.uint8)
for idx, path in tqdm(enumerate(img_paths)):
img_arr = cv2.imread(path)[..., ::-1]
img_arr = np.array(img_arr)
img_np[idx] = img_arr
score = mifid.compute_mifid(img_np)
return score
def get_accuracy(output, label):
output = output.to('cpu').clone().detach().squeeze().numpy()
output = (output > 0.5).astype('uint8')
label = label.to('cpu').clone().detach().squeeze().numpy()
label = (label > 0.5).astype('uint8')
acc = accuracy_score(output, label)
return acc
#BigGAN
def run(lr_G=3e-4,lr_D=6e-4, beta1=0.0, beta2=0.999, nz=120, epochs=2,
n_ite_D=1, ema_decay_rate=0.999, show_epoch_list=None, output_freq=10):
netG = Generator(n_feat=NGF, codes_dim=20).to(device) #z.shape=(*,120)
netD = Discriminator(n_feat=NDF).to(device)
printBoth(LOG, 'count_parameters of netG = {}'.format(count_parameters(netG)))
printBoth(LOG, 'count_parameters of netD = {}'.format(count_parameters(netD)))
real_label = 0.9
fake_label = 0
D_loss_list = []
G_loss_list = []
dis_criterion = nn.BCELoss().to(device)
optimizerD = optim.Adam(netD.parameters(), lr=lr_D, betas=(beta1, beta2))
optimizerG = optim.Adam(netG.parameters(), lr=lr_G, betas=(beta1, beta2))
fixed_noise = torch.randn(64, nz, 1, 1, device=device)
netG.train()
netD.train()
### training here
printBoth(LOG, 'Starting training ...')
clean_dir(DIR_IMAGES_OUTPUT)
for epoch in range(1,epochs+1):
loss_d_real = 0
loss_d_fake = 0
loss_g = 0
acc_d_real = 0
acc_d_fake = 0
for ii, data in enumerate(train_loader):
############################
# (1) Update D network
###########################
# train with real
netD.zero_grad()
real_images = data['img'].to(device, non_blocking=True)
batch_size = real_images.size(0)
dis_labels = torch.full((batch_size, 1), 0.9, device=device) #shape=(*,)
dis_output = netD(real_images) #dis shape=(*,1)
errD_real = dis_criterion(dis_output, dis_labels)
errD_real.backward()
loss_d_real += errD_real.item() / len(train_loader)
acc_d_real += get_accuracy(dis_output, dis_labels) / len(train_loader)
# train with fake
noise = torch.randn(batch_size, nz, 1, 1, device=device)
fake = netG(noise)
dis_labels.fill_(0.0)
dis_output = netD(fake.detach())
errD_fake = dis_criterion(dis_output, dis_labels)
errD_fake.backward()
optimizerD.step()
loss_d_fake += errD_fake.item() / len(train_loader)
acc_d_fake += get_accuracy(dis_output, dis_labels) / len(train_loader)
############################
# (2) Update G network
###########################
netG.zero_grad()
dis_labels.fill_(0.9) # fake labels are real for generator cost
noise = torch.randn(batch_size, nz, 1, 1, device=device)
fake = netG(noise)
dis_output = netD(fake)
errG = dis_criterion(dis_output, dis_labels)
errG.backward()
optimizerG.step()
loss_g += errG.item()/len(train_loader)
# save model
torch.save(netG.state_dict(), DIR_IMAGES_OUTPUT + '{}_G.pth'.format(epoch))
torch.save(netD.state_dict(), DIR_IMAGES_OUTPUT + '{}_D.pth'.format(epoch))
# evaluate and save generated images
with torch.no_grad():
dir_output = DIR_IMAGES_OUTPUT + str(epoch)
clean_dir(dir_output)
validate_images_gen(netG, fixed_noise, dir_output)
eval_fdi = evaluate_dataset(dir_output, mifid)
# print
printBoth(LOG, 'epoch={}; loss_d_real={:0.5}; loss_d_fake={:0.5}; loss_g={:0.5}; acc_d_real={:0.5}; acc_d_fake={:0.5}; eval_fdi={:0.5}'.\
format(epoch, loss_d_real, loss_d_fake, loss_g, acc_d_real, acc_d_fake, eval_fdi))
def generate_seed(manualSeed=None):
if manualSeed is None:
manualSeed = random.randint(1000, 10000) # fix seed
printBoth(LOG, 'RANDOM SEED: {}'.format(manualSeed))
random.seed(manualSeed)
np.random.seed(manualSeed)
torch.manual_seed(manualSeed)
cudnn.benchmark = True
def print_params():
printBoth(LOG, 'MODEL_NAME = {}'.format(MODEL_NAME))
printBoth(LOG, 'LOG = {}'.format(LOG))
printBoth(LOG, 'LIMIT_DATA = {}'.format(LIMIT_DATA))
printBoth(LOG, 'EPOCHS = {}'.format(EPOCHS))
printBoth(LOG, 'BATCH_SIZE = {}'.format(BATCH_SIZE))
printBoth(LOG, 'NUM_WORKERS = {}'.format(NUM_WORKERS))
printBoth(LOG, 'NC = {}'.format(NC))
printBoth(LOG, 'NZ = {}'.format(NZ))
printBoth(LOG, 'NGF = {}'.format(NGF))
printBoth(LOG, 'NDF = {}'.format(NDF))
printBoth(LOG, 'LR_G = {}'.format(LR_G))
printBoth(LOG, 'LR_D = {}'.format(LR_D))
printBoth(LOG, 'BETA1 = {}'.format(BETA1))
printBoth(LOG, 'BETA2 = {}'.format(BETA2))
printBoth(LOG, 'IMG_SIZE = {}'.format(IMG_SIZE))
printBoth(LOG, 'MEAN1 = {}; MEAN2 = {}; MEAN3 = {}'.format(MEAN1, MEAN2, MEAN3))
printBoth(LOG, 'STD1 = {}; STD2 = {}; STD3 = {};'.format(STD1, STD2, STD3))
printBoth(LOG, 'DIR_IMAGES_INPUT = {}'.format(DIR_IMAGES_INPUT))
printBoth(LOG, 'DIR_IMAGES_OUTPUT = {}'.format(DIR_IMAGES_OUTPUT))
printBoth(LOG, 'NUM_WORKERS = {}'.format(NUM_WORKERS))
def generate_images(model_path, dir_images_output, num_images=10000, batch_size=1000, truncated=None, device='cuda'):
# load model
netG = Generator(n_feat=NGF, codes_dim=20).to(device)
netG.load_state_dict(torch.load(model_path, map_location=torch.device(device)))
#netG = netG.to(device)
# generate
clean_dir(dir_images_output)
for batch in range(int(num_images/batch_size)):
#print('Generating batch {}'.format(batch))
if truncated is not None:
cont = True
while cont:
z = np.random.randn(100*batch_size*NZ)
z = z[np.where(abs(z)<truncated)]
if len(z)>=batch_size*NZ:
cont = False
z = torch.from_numpy(z[:batch_size*NZ]).view(batch_size, NZ, 1, 1)
z = z.float().to(device)
else:
z = torch.randn(batch_size, NZ, 1, 1, device=device)
gen_images = netG(z)
gen_images = gen_images.to(device).clone().detach().squeeze(0)
gen_images = gen_images*0.5 + 0.5
for i in range(gen_images.size(0)):
save_image(gen_images[i, :, :, :], os.path.join(dir_images_output, '{}_{}.png'.format(batch, i)))
if __name__ == '__main__':
# load the evaluation model
printBoth(LOG, 'Loading the evaluation model ...')
mifid = MIFID(model_path='./evaluation_script/client/motorbike_classification_inception_net_128_v4_e36.pb',
public_feature_path='./evaluation_script/client/public_feature.npz')
# set seeds
generate_seed()
# params
print_params()
# create transform
printBoth(LOG, 'Creating dataloaders ...')
transform1 = transforms.Compose([transforms.Resize(IMG_SIZE)])
transform2 = transforms.Compose([transforms.RandomCrop(IMG_SIZE),
#transforms.RandomAffine(degrees=5),
transforms.RandomHorizontalFlip(p=0.5),
#transforms.RandomApply(random_transforms, p=0.3),
transforms.ToTensor(),
transforms.Normalize(mean=[MEAN1, MEAN2, MEAN3],
std=[STD1, STD2, STD3]),
])
img_filenames = []
for image_name in sorted(os.listdir(DIR_IMAGES_INPUT)):
if image_name not in INTRUDERS:
img_filenames.append(image_name)
if (LIMIT_DATA>0) and (len(img_filenames)>=LIMIT_DATA):
break
printBoth(LOG, 'The length of img_filenames = {}'.format(len(img_filenames)))
# create dataloader
train_set = MotobikeDataset(path=DIR_IMAGES_INPUT,
img_list=img_filenames,
transform1=transform1,
transform2=transform2,
)
train_loader = DataLoader(train_set,
shuffle=True,
batch_size=BATCH_SIZE,
num_workers=NUM_WORKERS,
pin_memory=True)
printBoth(LOG, 'The length of train_set = {}'.format(len(train_set)))
printBoth(LOG, 'The length of train_loader = {}'.format(len(train_loader)))
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
printBoth(LOG, 'device={}'.format(device))
# train
res = run(lr_G=LR_G,
lr_D=LR_D,
beta1=BETA1,
beta2=BETA2,
nz=NZ,
epochs=EPOCHS)