-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
519 lines (443 loc) · 24.7 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
# srun --mem=16g --nodes=1 --ntasks-per-node=1 --cpus-per-task=4 \
# --partition=gpuA100x4-interactive -interactive --account=bblr-delta-gpu \
# --gpus-per-node=1 --time=00:30:00 --x11 --pty /bin/bash
"""srun --account=bblr-delta-gpu --time=01:30:00 --nodes=1 --ntasks-per-node=16 \
--partition=gpuA100x4,gpuA40x4 --gpus=1 --mem=16g --pty /bin/bash"""
"""srun --account=bblr-delta-gpu --partition=gpuA100x4-interactive \
--nodes=1 --gpus-per-node=1 --tasks=1 \
--tasks-per-node=16 --cpus-per-task=1 --mem=20g \
--pty bash"""
"""srun --account=bblr-delta-cpu --partition=cpu-interactive \
--time=00:30:00 --mem=16g \
jupyter-notebook --no-browser \
--port=8991 --ip=0.0.0.0"""
from dataset import *
import os, sys
import numpy as np
import pandas as pd
import torch
import torch.nn as nn
import torch.distributions as td
from copy import deepcopy
import matplotlib
matplotlib.use('Agg')
import matplotlib.pyplot as plt
import logging
# torch.set_default_tensor_type(torch.cuda.FloatTensor)
import argparse
import sys
import pickle as pkl
import sklearn
from tqdm import tqdm
from sklearn.metrics import roc_auc_score
from sklearn.preprocessing import label_binarize
import json
from operator import itemgetter
from sklearn.mixture import GaussianMixture
from collections import Counter
from sklearn.cluster import KMeans
from datetime import datetime
from utils.utils import *
from utils.tree_utils import *
from model import *
def get_set(set_list, indices, n):
# Split sizes
train_size = int(0.6 * n)
validation_size = int(0.4 * n)
test_size = n
# Split indices
train_indices = list(indices[:train_size])
dev_indices = list(indices[train_size:train_size+validation_size])
test_indices = list(indices[train_size:])
get_items_tr = itemgetter(*train_indices) # Creates a callable for indexing
get_items_dev = itemgetter(*dev_indices)
get_items_te = itemgetter(*test_indices)
result_tr = list(get_items_tr(set_list))
result_dev = list(get_items_dev(set_list))
result_te = list(get_items_te(set_list))
result_train = result_tr if isinstance(result_tr, list) else [result_tr]
result_val = result_dev if isinstance(result_dev, list) else [result_dev]
result_test = result_te if isinstance(result_te, list) else [result_te]
return result_train, result_val, result_test
def load_data(data_dir, journalist, classes, batch_size, collate):
### Data (normalize input inter-event times, then padding to create dataloaders)
num_classes, num_sequences = 0, 0
seq_dataset = []
arr = []
dp = []
rel = []
split = [100, 150]
# JiayangFan: 80, 84
# muyixiao: 12, 16
# lingling: 98, 99
# meifong: 100, 150
# marianna: 2: 10
# marianna: 689
val = 0
journal_sort = pd.read_csv((os.path.join(data_dir, f'{journalist}/{journalist}_conv_labels.csv')))
ids = []
for item in list(journal_sort['conversation_id']):
if item not in ids:
ids.append(item)
id_pair = {}
id_conv = {}
for idx in ids:
id_pair[idx], id_conv[idx] = create_conversation_list(journal_sort[journal_sort['conversation_id']==idx], idx)
id_data, uid, data, label = create_data(journal_sort, ids)
prob = pkl.load(open(os.path.join(data_dir, f'{journalist}/{journalist}_edgeprob.pkl'), 'rb'))
with open(os.path.join(data_dir, f'{journalist}/{journalist}_global_path.txt'), "r") as f:
for line in tqdm(f, total=get_number_of_lines(f)):
dp.append(json.loads(line.strip()))
with open(os.path.join(data_dir, f'{journalist}/{journalist}_local_path.txt'), "r") as f:
for line in tqdm(f, total=get_number_of_lines(f)):
rel.append(json.loads(line.strip()))
global_input = convert_global(dp, id_data)
local_data = convert_local(rel)
local_mat = generate_local_mat(local_data, id_data)
local_input = create_mat(local_mat, mat_type='concat')
logging.info(f'loaded split {journalist}...')
# data - dict: dim_process, devtest, args, train, dev, test, index (train/dev/test given as)
# data[split] - list dicts {'time_since_start': at, 'time_since_last_event': dt, 'type_event': mark} or
# data[split] - dict {'arrival_times', 'delta_times', 'marks'}
# data['dim_process'] = Number of accounts = 119,298
# num_sequences: number of conversations of a journalist
num_classes = classes
#num_sequences += len(data[split]['arrival_times'])
num_sequences = len(set(journal_sort['conversation_id']))
id_train, id_dev, id_test = id_data[:split[0]], id_data[split[0]:split[1]], id_data[split[1]:]
uid_train, uid_dev, uid_test = uid[:split[0]], uid[split[0]:split[1]], uid[split[1]:]
X_train, X_dev, X_test = data[:split[0]], data[split[0]:split[1]], data[split[1]:]
prob_train, prob_dev, prob_test = prob[:split[0]], prob[split[0]:split[1]], prob[split[1]:]
global_train, global_dev, global_test = global_input[:split[0]], global_input[split[0]:split[1]], global_input[split[1]:]
local_train, local_dev, local_test = local_input[:split[0]], local_input[split[0]:split[1]], local_input[split[1]:]
label_train, label_dev, label_test = label[:split[0]], label[split[0]:split[1]], label[split[1]:]
# id_train, id_dev, id_test = id_data[split[0]:split[1]], id_data[:split[0]], id_data[split[1]:]
# uid_train, uid_dev, uid_test = uid[split[0]:split[1]], uid[:split[0]], uid[split[1]:]
# X_train, X_dev, X_test = data[split[0]:split[1]], data[:split[0]], data[split[1]:]
# prob_train, prob_dev, prob_test = prob[split[0]:split[1]], prob[:split[0]], prob[split[1]:]
# global_train, global_dev, global_test = global_input[split[0]:split[1]], global_input[:split[0]], global_input[split[1]:]
# local_train, local_dev, local_test = local_input[split[0]:split[1]], local_input[:split[0]], local_input[split[1]:]
# label_train, label_dev, label_test = label[split[0]:split[1]], label[:split[0]], label[split[1]:]
# n = 16
# indices = np.arange(n)
# np.random.shuffle(indices)
# id_train, id_dev, id_test = get_set(id_data, indices, n)
# uid_train, uid_dev, uid_test = get_set(uid, indices, n)
# X_train, X_dev, X_test = get_set(data, indices, n)
# prob_train, prob_dev, prob_test = get_set(prob, indices, n)
# global_train, global_dev, global_test = get_set(global_input, indices, n)
# local_train, local_dev, local_test = get_set(local_input, indices, n)
# label_train, label_dev, label_test = get_set(label, indices, n)
d_train = TreeDataset(id_train, uid_train, X_train, prob_train, global_train, local_train, label_train)
d_val = TreeDataset(id_dev, uid_dev, X_dev, prob_dev, global_dev, local_dev, label_dev)
d_test = TreeDataset(id_test, uid_test, X_test, prob_test, global_test, local_test, label_test)
# for padding input sequences to maxlen of batch for running on gpu, and arranging them by length efficient
collate = collate
dl_train = torch.utils.data.DataLoader(d_train, batch_size=batch_size, shuffle=False, collate_fn=collate)
dl_val = torch.utils.data.DataLoader(d_val, batch_size=batch_size, shuffle=False, collate_fn=collate)
dl_test = torch.utils.data.DataLoader(d_test, batch_size=batch_size, shuffle=False, collate_fn=collate)
return dl_train, dl_val, dl_test
def create_model(num_classes, args):
# General model config
# general_config = dpp.model.ModelConfig(
# encoder_type=args.encoder_type, use_history=args.use_history, history_size=args.history_size, rnn_type=args.rnn_type,
# use_embedding=args.use_embedding, embedding_size=args.embedding_size, num_embeddings=num_sequences, # seq emb
# use_marks=args.use_marks, mark_embedding_size=args.mark_embedding_size, num_classes=num_classes,
# heads=args.heads, depth=args.depth, wide=args.wide, seq_length=args.max_seq_length, device=args.device,
# pos_enc=args.pos_enc, add=args.add, time_opt=args.time_opt, expand_dim=args.expand_dim,
# )
# Decoder specific config
model = CustomTransformerModel(args.feature_dim, args.global_dim, args.embed_size, args.num_classes,
args.num_heads, args.num_layers, args.dropout, args.forward_expansion, args.max_len, args.mode)
strat_model = StratModel(args.embed_size)
model = model.to(args.device)
strat_model = strat_model.to(args.device)
logging.info(model)
opt = torch.optim.Adam(model.parameters(), weight_decay=args.regularization, lr=args.learning_rate)
model = model.to(args.device)
strat_opt = torch.optim.Adam(strat_model.parameters(), lr=args.learning_rate)
strat_model = strat_model.to(args.device)
return model, opt, strat_model, strat_opt
def train(model, opt, strat_model, strat_opt, dl_train, dl_val, logging, max_epochs, patience, display_step, save_freq, out_dir, device, args, gmm = None):
# Training (max_epochs or until the early stopping condition is satisfied)
# Function that calculates the loss for the entire dataloader
impatient = 0
best_loss = np.inf
best_model = deepcopy(model.state_dict())
criterion = nn.CrossEntropyLoss()
min_loss = float('inf')
max_acc = 0
best_model_path = os.path.join(f'{args.journalist}/best_model_w_strat.pth')
best_strat_model_path = os.path.join(f'{args.journalist}/best_strat_model_w_strat.pth')
use_strat = args.use_strat
for epoch in range(args.max_epochs): # Number of epochs
pred_tr = []
predict_tr = []
true_tr = []
prob_tr = []
strat_tr = []
output_tr = []
for item in dl_train:
# Forward pass
data = item.data.float().to(args.device)
dp = item.global_path.float().to(args.device)
rel = item.local_path.float().to(args.device)
prob = item.prob.float().to(args.device)
targets = item.labels.long().to(args.device)
mask = item.masks.float().to(args.device)
mask_bool = mask.bool()
output, p_output, c_output = model(data, dp, rel, mask)
#output, p_output = model(data, dp, rel, mask)
prob_tr.append(p_output)
prob_output = strat_model(p_output.detach(), c_output.detach())
#print(data.size, prob_output.size(), prob.size())
_, predicted = torch.max(output.data, 2)
output_tr.append(p_output.tolist())
# get strategy distributions
strat_tr.append(prob_output.tolist())
predict_tr.append(predicted.tolist())
pred_tr.extend(predicted[mask_bool].view(-1).tolist())
true_tr.extend(targets[mask_bool].view(-1).tolist())
correct_tr = sum(p == t for p, t in zip(pred_tr, true_tr))
acc_tr = correct_tr / len(true_tr)
f1_tr = sklearn.metrics.f1_score(true_tr, pred_tr, average='weighted')
recall_tr = sklearn.metrics.recall_score(true_tr, pred_tr, average='weighted')
y_true_binarized = label_binarize(true_tr, classes=range(args.num_classes))
#print(y_true_binarized.size(), output[mask_bool].view(-1, 3).size())
#print(y_true_binarized, output[mask_bool].view(-1, 3))
#auc_tr = roc_auc_score(y_true_binarized, output[mask_bool].view(-1, 3).cpu().detach().numpy(), multi_class='ovr')
#print(output[mask_bool].view(-1, args.num_classes), targets[mask_bool].view(-1))
loss = criterion(output[mask_bool].view(-1, args.num_classes), targets[mask_bool].view(-1))
# Apply the padding mask
#loss = loss * mask
# Compute the mean loss, considering only non-padded elements
# loss = loss.sum() / mask.sum()
# Backward and optimize
opt.zero_grad()
loss.backward()
opt.step()
if use_strat == True:
# Dot product between probability_output and prob
dot_product = torch.sum(prob_output * prob, dim=-1) # Sum over the last dimension
# Taking negative logarithm; adding a small value for numerical stability
log_loss = -torch.log(dot_product + 1e-9)
# Masking and averaging the additional loss
loss_strat = (log_loss * mask).sum() / mask.sum()
# Combine the losses
total_loss = loss + loss_strat
strat_opt.zero_grad()
loss_strat.backward() # No need to retain graph here
strat_opt.step()
#total_loss.backward()
#optimizer.step()
else:
total_loss = loss
#total_loss.backward()
#optimizer.step()
#if loss.item() < min_loss:
if acc_tr > max_acc:
min_loss = loss.item()
max_acc = acc_tr
print(f"Epoch [{epoch+1}/10], New Min Loss: {min_loss}, New Strategy Loss: {total_loss}")
print(f"Acc: {acc_tr}, F1: {f1_tr}, Recall: {recall_tr}")
# Save the model state
best_strat = strat_tr
with open(os.path.join(args.out_dir, f'{args.journalist}/strat_tr.pkl'), 'wb') as file:
pickle.dump(best_strat, file)
with open(os.path.join(args.out_dir, f'{args.journalist}/output.pkl'), 'wb') as file:
pickle.dump(output_tr, file)
with open(os.path.join(args.out_dir, f'{args.journalist}/pred_tr.pkl'), 'wb') as file:
pickle.dump(predict_tr, file)
torch.save(model.state_dict(), os.path.join(args.out_dir, best_model_path))
torch.save(strat_model.state_dict(), os.path.join(args.out_dir, best_strat_model_path))
#predictions, strat_li, true_labels = evaluate(model, strat_model, dl_val, args.device)
logging.info('Training finished.............')
#model.load_state_dict(torch.load(os.path.join(args.out_dir, best_model_path)))
#strat_model.load_state_dict(torch.load(os.path.join(args.out_dir, best_strat_model_path)))
#torch.save(model, os.path.join(args.out_dir, best_model_path))
logging.info(f"The entire model is saved in {os.path.join(args.out_dir, best_model_path)}.")
# loading model model = torch.load(save_model_path)
# Plot training curve displaying separated validation losses
# plot_loss = np.array(torch.tensor(plot_val_losses).detach().cpu())
# if len(plot_loss) > patience:
# plot_loss = plot_loss[:-patience] # plot only until early stopping
# fig, axes = plt.subplots(1, 5, figsize=(20, 4))
# plot_labels = ['Total_loss', 'Time_NLL', 'Marks_NLL', 'Marks_Acc', 'GMM_Loss']
# for i in range(plot_loss.shape[1]):
# ax = axes[i]
# ax.plot(range(len(plot_loss)), plot_loss[:, i], marker='o', label=plot_labels[i], markersize=3)
# ax.set_xlabel('Val Loss vs. Training Epoch')
# # ax.set_ylabel(plot_labels[i])
# # ax.set_title('Validation dataset')
# ax.legend()
# plt.savefig(os.path.join(out_dir, 'training_curve.png'))
def evaluate(model, strat_model, dl_test, device):
# Calculate the train/val/test loss, plot training curve
model.eval()
strat_model.eval()
with torch.no_grad():
test_loss = 0
test_steps = 0
predictions = []
true_labels = []
strat_val = []
pred_val = []
output_val = []
for item in tqdm(dl_test): # Assuming 'val' is your validation dataset
# Forward pass
data = item.data.float().to(device)
dp = item.global_path.float().to(device)
rel = item.local_path.float().to(device)
targets = item.labels.long().to(device)
mask = item.masks.float().to(device)
mask_bool = mask.bool()
output, p_output, c_output = model(data, dp, rel, mask)
#output, p_output = model(data, dp, rel, mask)
prob_output = strat_model(p_output.detach(), c_output.detach())
strat_val.append(prob_output.tolist())
output_val.append(p_output.tolist())
_, predicted = torch.max(output.data, 2)
pred_val.append(predicted.tolist())
#print(mask_bool, predicted.size(), targets.size())
#print(predicted, targets)
predictions.extend(predicted[mask_bool].view(-1).tolist())
true_labels.extend(targets[mask_bool].view(-1).tolist())
correct_predictions = sum(p == t for p, t in zip(predictions, true_labels))
if len(true_labels) != 0:
accuracy = correct_predictions / len(true_labels)
f1_te = sklearn.metrics.f1_score(true_labels, predictions, average='weighted')
recall_te = sklearn.metrics.recall_score(true_labels, predictions, average='weighted')
y_true_binarized = label_binarize(true_labels, classes=range(args.num_classes))
else:
f1_te, recall_te, accuracy = 0, 0, 0
#print(y_true_binarized.size(), output[mask_bool].view(-1, 3).size())
#print(y_true_binarized, output[mask_bool].view(-1, 3))
#auc_te = roc_auc_score(y_true_binarized, output[mask_bool].view(-1, 3).cpu().detach().numpy(), multi_class='ovr')
print(f'Test Accuracy: {accuracy:.4f}')
#logging.info(f'{dl_name}: {loss_tot:.4f}')
logging.info(f'Test Accuracy: {accuracy:.4f}, F1: {f1_te}, Recall: {recall_te}')
return pred_val, strat_val, output_val, true_labels, predictions
def test(model, strat_model, dl_test, device):
# Calculate the train/val/test loss, plot training curve
model.eval()
strat_model.eval()
with torch.no_grad():
test_loss = 0
test_steps = 0
predictions = []
true_labels = []
strat_li = []
predicted_li = []
for item in tqdm(dl_test): # Assuming 'val' is your validation dataset
# Forward pass
data = item.data.float().to(device)
dp = item.global_path.float().to(device)
rel = item.local_path.float().to(device)
targets = item.labels.long().to(device)
mask = item.masks.float().to(device)
mask_bool = mask.bool()
output, p_output, c_output = model(data, dp, rel, mask)
#output, p_output = model(data, dp, rel, mask)
prob_output = strat_model(p_output.detach(), c_output.detach())
strat_li.append(prob_output.tolist())
_, predicted = torch.max(output.data, 2)
predicted_li.append(predicted.tolist())
#print(mask_bool, predicted.size(), targets.size())
#print(predicted, targets)
predictions.extend(predicted[mask_bool].view(-1).tolist())
#true_labels.extend(targets[mask_bool].view(-1).tolist())
#correct_predictions = sum(p == t for p, t in zip(predictions, true_labels))
#accuracy = correct_predictions / len(true_labels)
#f1_te = sklearn.metrics.f1_score(true_labels, predictions, average='weighted')
#recall_te = sklearn.metrics.recall_score(true_labels, predictions, average='weighted')
#y_true_binarized = label_binarize(true_labels, classes=range(args.num_classes))
#print(y_true_binarized.size(), output[mask_bool].view(-1, 3).size())
#print(y_true_binarized, output[mask_bool].view(-1, 3))
#auc_te = roc_auc_score(y_true_binarized, output[mask_bool].view(-1, 3).cpu().detach().numpy(), multi_class='ovr')
#print(f'Test Accuracy: {accuracy:.4f}')
#logging.info(f'{dl_name}: {loss_tot:.4f}')
#logging.info(f'Test Accuracy: {accuracy:.4f}, F1: {f1_te}, Recall: {recall_te}')
return predicted_li, strat_li, predictions
if __name__=='__main__':
parser = argparse.ArgumentParser(description='Tempt model')
## dataset and output directories
parser.add_argument('--data_dir', type=str, default='../data')
parser.add_argument('--out_dir', type=str, default='../data')
parser.add_argument('--log_filename', type=str, default='run.log')
parser.add_argument('--journalist', type=str, default='aliceysu')
parser.add_argument('--classes', type=int, default=3)
parser.add_argument('--best_model_path', type=str, default='best_model.pth')
parser.add_argument('--best_strat_model_path', type=str, default='best_strat_model.pth')
## model encoder parameters
parser.add_argument('--feature_dim', type=int, default=11)
parser.add_argument('--global_dim', type=int, default=3)
parser.add_argument('--embed_size', type=int, default=512)
parser.add_argument('--num_heads', type=int, default=8)
parser.add_argument('--num_classes', type=int, default=3)
parser.add_argument('--forward_expansion', type=int, default=4)
parser.add_argument('--mode', type=str, default='all', help='pos or rel or only')
parser.add_argument('--depth', type=int, default=1)
parser.add_argument('--wide', dest='wide', default=True, action='store_true', help='Change back')
parser.add_argument('--num_layers', type=int, default=3, help='flow-based models.')
parser.add_argument('--d_ff', type=int, default=None)
parser.add_argument('--max_len', type=int, default=2000)
parser.add_argument('--dropout', type=float, default=0.1)
## training arguments
parser.add_argument('--seed', type=int, default=42)
parser.add_argument('--device', type=str, default='cuda')
parser.add_argument('--regularization', type=float, default=1e-3)
parser.add_argument('--learning_rate', type=float, default=0.0001)
parser.add_argument('--max_epochs', type=int, default=200) # 1000
parser.add_argument('--max_loop', type=int, default=1)
parser.add_argument('--patience', type=int, default=2)
parser.add_argument('--save_freq', type=int, default=1)
parser.add_argument('--display_step', type=int, default=1)
parser.add_argument('--batch_size', type=int, default=4)
parser.add_argument('--use_strat', type=bool, default=False)
args = parser.parse_args()
args.device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
print(args.device)
if not os.path.isdir(args.out_dir): os.makedirs(args.out_dir)
np.random.seed(args.seed); torch.manual_seed(args.seed);
logging.basicConfig(
level=logging.INFO,
format='[{%(filename)s:%(lineno)d} %(levelname)s - %(message)s',
handlers=[
logging.FileHandler(filename=os.path.join(args.out_dir, args.log_filename)),
logging.StreamHandler(sys.stdout)
]
) # logger = logging.getLogger('')
logging.info('Logging any runs of this program - appended to same file.')
logging.info('Arguments = {}'.format(args))
dl_train, dl_val, dl_test = load_data(args.data_dir, args.journalist, args.classes, args.batch_size, collate)
logging.info('loaded the dataset and formed torch dataloaders.')
model, opt, strat_model, strat_opt = create_model(args.classes, args)
logging.info('model created from config hyperparameters.')
train(model, opt, strat_model, strat_opt, dl_train, dl_val, logging, args.max_epochs, args.patience,
args.display_step, args.save_freq, args.out_dir, args.device, args)
dl_list = dl_val #[dl_train, dl_val, dl_test]
dl_names = ['Train', 'Val', 'Test']
# evaluate
best_model_path = os.path.join(f'{args.journalist}/best_model_w_strat.pth')
best_strat_model_path = os.path.join(f'{args.journalist}/best_strat_model_w_strat.pth')
model.load_state_dict(torch.load(os.path.join(args.out_dir, best_model_path)))
strat_model.load_state_dict(torch.load(os.path.join(args.out_dir, best_strat_model_path)))
pred_val, strat_val, output_val, true_labels, predictions = evaluate(model, strat_model, dl_val, args.device)
#pred_te, strat_te, predictions_te = test(model, strat_model, dl_test, args.device)
pred_te, strat_te, output_te, true_labels_te, predict_te = evaluate(model, strat_model, dl_test, args.device)
with open(os.path.join(args.out_dir, f'{args.journalist}/pred_val.pkl'), 'wb') as file:
pickle.dump(pred_val, file)
with open(os.path.join(args.out_dir, f'{args.journalist}/strat_val.pkl'), 'wb') as file:
pickle.dump(strat_val, file)
with open(os.path.join(args.out_dir, f'{args.journalist}/output_val.pkl'), 'wb') as file:
pickle.dump(output_val, file)
with open(os.path.join(args.out_dir, f'{args.journalist}/true_labels.pkl'), 'wb') as file:
pickle.dump(true_labels, file)
with open(os.path.join(args.out_dir, f'{args.journalist}/predictions.pkl'), 'wb') as file:
pickle.dump(predictions, file)
with open(os.path.join(args.out_dir, f'{args.journalist}/output_te.pkl'), 'wb') as file:
pickle.dump(output_te, file)
with open(os.path.join(args.out_dir, f'{args.journalist}/strat_te.pkl'), 'wb') as file:
pickle.dump(strat_te, file)
with open(os.path.join(args.out_dir, f'{args.journalist}/pred_te.pkl'), 'wb') as file:
pickle.dump(pred_te, file)