-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtrainingset_ece.py
170 lines (143 loc) · 6.05 KB
/
trainingset_ece.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
from pan_regnety120 import PAN
import torch
import argparse
import logging
import os
import sys
import cv2
from baal.bayesian import MCDropoutConnectModule
from matplotlib import pyplot as plt
from ece_metric import *
import numpy as np
import torch
import torch.nn as nn
from torch import optim
from tqdm import tqdm
import torchvision
from eval import eval_net
from visualize import visualize_to_tensorboard
from torch.utils.tensorboard import SummaryWriter
from dataset import BasicDataset
from torch.utils.data import DataLoader, random_split
import segmentation_models_pytorch as smp
global val_iou_score
global best_val_iou_score
global best_test_iou_score
val_iou_score = 0.
best_val_iou_score = 0.
best_test_iou_score = 0.
# ailab
dir_img = "/data.local/all/hangd/dynamic_data/imgs/"
dir_mask = '/data.local/all/hangd/dynamic_data/masks/'
dir_img_test = '/data.local/all/hangd/src_code_3/Pytorch-UNet/data_test/imgs/'
dir_mask_test = '/data.local/all/hangd/src_code_3/Pytorch-UNet/data_test/masks/'
global GAUSS_ITERATION
GAUSS_ITERATION = 30
def train_net(
dir_checkpoint,
n_classes,
bilinear,
n_channels,
device,
epochs=30,
val_percent=0.1,
save_cp=True,
img_scale=1):
global best_val_iou_score
global best_test_iou_score
net = PAN()
ckpt_path = "/data.local/all/hangd/v1/uncertainty1/best_CP_epoch15_test_iou_85_with_25_percent_original_training_dataset.pth"
net.to(device=device)
net.load_state_dict(
torch.load(ckpt_path, map_location=device)
)
logging.info(f'Model loaded from {ckpt_path}')
dataset = BasicDataset(dir_img, dir_mask, img_scale)
data_test = BasicDataset(imgs_dir=dir_img_test, masks_dir=dir_mask_test, train=False, scale=img_scale)
batch_size = 4
train_loader = DataLoader(dataset, batch_size=batch_size, shuffle=True, num_workers=4, pin_memory=True)
lr = 1e-5
writer = SummaryWriter(comment=f'_{net.__class__.__name__}_ECE_on_25percentage_data')
global_step = 0
logging.info(f'''Starting training:
Device: {device.type}
''')
epochs = 1
ece_values = []
for epoch in range(epochs):
net.train()
epoch_loss = 0
n_train = len(dataset)
with tqdm(total=n_train, desc='Validation round', unit='batch', leave=False) as pbar:
for batch in train_loader:
imgs, true_masks = batch['image'], batch['mask']
imgs = imgs.to(device=device, dtype=torch.float32)
true_masks = true_masks.to(device=device, dtype=torch.float32) # BHWC
true_masks = true_masks[:, :1, :, :]
y_pred_samples = []
for i in range(GAUSS_ITERATION):
with torch.no_grad():
logits = net(imgs)
y_pred = torch.sigmoid(logits)
# y_pred = (y_pred > 0.5).float()
y_pred = y_pred[:, :1, :, :]
y_pred_samples.append(y_pred[:, 0, :, :]) # y_pred_samples's shape: (inx, bat, H, W )
y_pred_samples = torch.stack(y_pred_samples, dim=0)
y_pred_samples = y_pred_samples.type(torch.FloatTensor)
mean_y_pred = y_pred_samples.mean(dim=0) # shape: batch, H, W
ece_values.extend(get_segmentation_mask_uncertainty(mean_y_pred, true_masks))
pbar.update()
for inx, ece_val in enumerate(ece_values):
writer.add_scalar("ECE_on_quarter_of_training_set", ece_val, inx)
def get_args():
parser = argparse.ArgumentParser(description='Train the UNet on images and target masks',
formatter_class=argparse.ArgumentDefaultsHelpFormatter)
parser.add_argument('-m', '--method', dest='method', type=str, default='i',
help='Choose dropout method: i for MCdropout ; w for Dropconnect')
parser.add_argument('-cuda', '--cuda-inx', type=int, nargs='?', default=0,
help='index of cuda', dest='cuda_inx')
parser.add_argument('-e', '--epochs', metavar='E', type=int, default=30,
help='Number of epochs', dest='epochs')
parser.add_argument('-b', '--batch-size', metavar='B', type=int, nargs='?', default=4,
help='Batch size', dest='batchsize')
parser.add_argument('-lr', '--learning-rate', metavar='LR', type=float, nargs='?', default=0.00001,
help='Learning rate', dest='lr')
parser.add_argument('-f', '--load', dest='load', type=str, default=False,
help='Load model from a .pth file')
parser.add_argument('-s', '--scale', dest='scale', type=float, default=1,
help='Downscaling factor of the images')
parser.add_argument('-v', '--validation', dest='val', type=float, default=10.0,
help='Percent of the data that is used as validation (0-100)')
return parser.parse_args()
if __name__ == '__main__':
logging.basicConfig(level=logging.INFO, format='%(levelname)s: %(message)s')
args = get_args()
dir_ckp = "/data.local/all/hangd/v1/uncertainty1/"
if torch.cuda.is_available():
_device = 'cuda:' + str(args.cuda_inx)
else:
_device = 'cpu'
device = torch.device(_device)
logging.info(f'Using device {device}')
n_classes = 1
n_channels = 3
bilinear = True
logging.info(f'Network:\n'
f'\t{n_channels} input channels\n'
f'\t{n_classes} output channels (classes)\n'
f'\t{"Bilinear" if bilinear else "Transposed conv"} upscaling')
try:
train_net(dir_checkpoint=dir_ckp,
n_classes=n_classes,
bilinear=bilinear,
n_channels=n_channels,
epochs=args.epochs,
device=device,
img_scale=args.scale,
val_percent=args.val / 100)
except KeyboardInterrupt:
logging.info('Saved interrupt')
try:
sys.exit(0)
except SystemExit:
os._exit(0)