-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathece_data32nd.py
187 lines (157 loc) · 6.78 KB
/
ece_data32nd.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
from pan_regnety120 import PAN
import torch
import argparse
import logging
import os
import sys
import cv2
from baal.bayesian import MCDropoutConnectModule
from matplotlib import pyplot as plt
from ece_metric import *
import numpy as np
import torch
import torch.nn as nn
from torch import optim
from tqdm import tqdm
import torchvision
from eval import eval_net
from visualize import visualize_to_tensorboard
from torch.utils.tensorboard import SummaryWriter
from dynamic_dataloader import RestrictedDataset
from torch.utils.data import DataLoader, random_split
from std_metric import get_segmentation_mask_uncertainty
import json
from dataset import BasicDataset
# ailab
dir_img = "/data.local/all/hangd/dynamic_data/one32rd/imgs/"
dir_mask = '/data.local/all/hangd/dynamic_data/one32rd/masks/'
dir_img_test = '/data.local/all/hangd/dynamic_data/full/data_test/imgs/'
dir_mask_test = '/data.local/all/hangd/dynamic_data/full/data_test/masks/'
global GAUSS_ITERATION
GAUSS_ITERATION = 30
def train_net(
dir_checkpoint,
n_classes,
bilinear,
n_channels,
device,
epochs=30,
val_percent=0.1,
save_cp=True,
img_scale=1):
global best_val_iou_score
global best_test_iou_score
net = PAN()
ckpt_path = "/data.local/all/hangd/v1/uncertainty1/best_CP_epoch29_one32th_.pth"
net.to(device=device)
net.load_state_dict(
torch.load(ckpt_path, map_location=device)
)
writer = SummaryWriter(comment=f'_{net.__class__.__name__}_ece_one32nd_training_set')
logging.info(f'Model loaded from {ckpt_path}')
batch_size = 4
dataset = BasicDataset(dir_img, dir_mask, True)
pool_loader = DataLoader(dataset, batch_size=batch_size, shuffle=True, num_workers=4, pin_memory=True)
# data_test = BasicDataset(imgs_dir=dir_img_test, masks_dir=dir_mask_test, train=False, scale=img_scale)
# test_loader = DataLoader(data_test, batch_size=16, shuffle=False, num_workers=2, pin_memory=True,drop_last=True)
logging.info(f'''Starting selecting in pool:
Device: {device.type}
''')
epochs = 1
# test_score_dice, test_score_iou = eval_net(net, test_loader, n_classes, device)
# print(f"TEST iou = {test_score_iou}, dice = {test_score_dice} ")
std = []
for epoch in range(epochs):
net.eval()
epoch_loss = 0
n_pool = len(dataset)
with tqdm(total=n_pool, desc='ECE calculating', unit='batch', leave=False) as pbar:
for ind, batch in enumerate(tqdm(pool_loader)):
imgs, true_masks = batch['image'], batch['mask']
imgs = imgs.to(device=device, dtype=torch.float32)
true_masks = true_masks.to(device=device, dtype=torch.float32) # BHWC
true_masks = true_masks[:, :1, :, :]
y_pred_samples = []
for i in range(GAUSS_ITERATION):
with torch.no_grad():
logits = net(imgs)
y_pred = torch.sigmoid(logits)
# y_pred = (y_pred > 0.5).float()
y_pred = y_pred[:, :1, :, :]
y_pred_samples.append(y_pred[:, 0, :, :]) # y_pred_samples's shape: (inx, bat, H, W )
y_pred_samples = torch.stack(y_pred_samples, dim=0)
y_pred_samples = y_pred_samples.type(torch.FloatTensor)
mean_y_pred = y_pred_samples.mean(dim=0) # shape: batch, H, W
std_y_pred = y_pred_samples.std(dim=0) # shape: batch, H, W
grid = torchvision.utils.make_grid(mean_y_pred.unsqueeze(1))
writer.add_image('images', grid, ind)
_std = get_segmentation_mask_uncertainty(std_y_pred)
std.extend(_std)
for ind, val in enumerate(std):
writer.add_scalar("std in pool - case one32nd data", val, ind)
writer.add_histogram("Histogram std corresponding", np.array(std), 1)
std = torch.cuda.FloatTensor(std)
mean = std.mean()
_std = std.std()
writer.add_scalar("Mean std", mean, 1)
writer.add_scalar("STD std", _std, 1)
print("Mean: ", mean)
print("std: ", _std)
# is_selected = False
# # TODO
# # Using some constraint here to select data
# # Acquisition functions
# if is_selected:
# id = batch['id']
# add_image_id_to_pool(id)
# pbar.update()
def get_args():
parser = argparse.ArgumentParser(description='Fetching dataset',
formatter_class=argparse.ArgumentDefaultsHelpFormatter)
parser.add_argument('-cuda', '--cuda-inx', type=int, nargs='?', default=0,
help='index of cuda', dest='cuda_inx')
parser.add_argument('-e', '--epochs', metavar='E', type=int, default=30,
help='Number of epochs', dest='epochs')
parser.add_argument('-b', '--batch-size', metavar='B', type=int, nargs='?', default=4,
help='Batch size', dest='batchsize')
parser.add_argument('-lr', '--learning-rate', metavar='LR', type=float, nargs='?', default=0.00001,
help='Learning rate', dest='lr')
parser.add_argument('-f', '--load', dest='load', type=str, default=False,
help='Load model from a .pth file')
parser.add_argument('-s', '--scale', dest='scale', type=float, default=1,
help='Downscaling factor of the images')
parser.add_argument('-v', '--validation', dest='val', type=float, default=10.0,
help='Percent of the data that is used as validation (0-100)')
return parser.parse_args()
if __name__ == '__main__':
logging.basicConfig(level=logging.INFO, format='%(levelname)s: %(message)s')
args = get_args()
dir_ckp = "/data.local/all/hangd/v1/uncertainty1/"
if torch.cuda.is_available():
_device = 'cuda:' + str(args.cuda_inx)
else:
_device = 'cpu'
device = torch.device(_device)
logging.info(f'Using device {device}')
n_classes = 1
n_channels = 3
bilinear = True
logging.info(f'Network:\n'
f'\t{n_channels} input channels\n'
f'\t{n_classes} output channels (classes)\n'
f'\t{"Bilinear" if bilinear else "Transposed conv"} upscaling')
try:
train_net(dir_checkpoint=dir_ckp,
n_classes=n_classes,
bilinear=bilinear,
n_channels=n_channels,
epochs=args.epochs,
device=device,
img_scale=args.scale,
val_percent=args.val / 100)
except KeyboardInterrupt:
logging.info('Saved interrupt')
try:
sys.exit(0)
except SystemExit:
os._exit(0)