-
Notifications
You must be signed in to change notification settings - Fork 188
/
Copy patheddsa.go
246 lines (200 loc) · 6.25 KB
/
eddsa.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
// Copyright 2020-2025 Consensys Software Inc.
// Licensed under the Apache License, Version 2.0. See the LICENSE file for details.
// Code generated by consensys/gnark-crypto DO NOT EDIT
package eddsa
import (
"crypto/subtle"
"errors"
"hash"
"io"
"math/big"
"github.com/consensys/gnark-crypto/ecc/bn254/fr"
"github.com/consensys/gnark-crypto/ecc/bn254/twistededwards"
"github.com/consensys/gnark-crypto/signature"
"golang.org/x/crypto/blake2b"
)
var errNotOnCurve = errors.New("point not on curve")
var errHashNeeded = errors.New("hFunc cannot be nil. We need a hash for Fiat-Shamir")
const (
sizeFr = fr.Bytes
sizePublicKey = sizeFr
sizeSignature = 2 * sizeFr
sizePrivateKey = 2*sizeFr + 32
)
// PublicKey eddsa signature object
// cf https://en.wikipedia.org/wiki/EdDSA for notation
type PublicKey struct {
A twistededwards.PointAffine
}
// PrivateKey private key of an eddsa instance
type PrivateKey struct {
PublicKey PublicKey // copy of the associated public key
scalar [sizeFr]byte // secret scalar, in big Endian
randSrc [32]byte // source
}
// Signature represents an eddsa signature
// cf https://en.wikipedia.org/wiki/EdDSA for notation
type Signature struct {
R twistededwards.PointAffine
S [sizeFr]byte
}
// GenerateKey generates a public and private key pair.
func GenerateKey(r io.Reader) (*PrivateKey, error) {
c := twistededwards.GetEdwardsCurve()
var pub PublicKey
var priv PrivateKey
// hash(h) = private_key || random_source, on 32 bytes each
seed := make([]byte, 32)
_, err := r.Read(seed)
if err != nil {
return nil, err
}
h := blake2b.Sum512(seed[:])
for i := 0; i < 32; i++ {
priv.randSrc[i] = h[i+32]
}
// prune the key
// https://tools.ietf.org/html/rfc8032#section-5.1.5, key generation
h[0] &= 0xF8
h[31] &= 0x7F
h[31] |= 0x40
// reverse first bytes because setBytes interpret stream as big endian
// but in eddsa specs s is the first 32 bytes in little endian
for i, j := 0, sizeFr-1; i < sizeFr; i, j = i+1, j-1 {
priv.scalar[i] = h[j]
}
var bScalar big.Int
bScalar.SetBytes(priv.scalar[:])
pub.A.ScalarMultiplication(&c.Base, &bScalar)
priv.PublicKey = pub
return &priv, nil
}
// Equal compares 2 public keys
func (pub *PublicKey) Equal(x signature.PublicKey) bool {
xx, ok := x.(*PublicKey)
if !ok {
return false
}
bpk := pub.Bytes()
bxx := xx.Bytes()
return subtle.ConstantTimeCompare(bpk, bxx) == 1
}
// Public returns the public key associated to the private key.
func (privKey *PrivateKey) Public() signature.PublicKey {
var pub PublicKey
pub.A.Set(&privKey.PublicKey.A)
return &pub
}
// Sign sign a sequence of field elements
// For arbitrary strings use fr.Hash first
// Pure Eddsa version (see https://tools.ietf.org/html/rfc8032#page-8)
func (privKey *PrivateKey) Sign(message []byte, hFunc hash.Hash) ([]byte, error) {
// hFunc cannot be nil.
// We need a hash function for the Fiat-Shamir.
if hFunc == nil {
return nil, errHashNeeded
}
curveParams := twistededwards.GetEdwardsCurve()
var res Signature
// blinding factor for the private key
// blindingFactorBigInt must be the same size as the private key,
// blindingFactorBigInt = h(randomness_source||message)[:sizeFr]
var blindingFactorBigInt big.Int
// randSrc = privKey.randSrc || msg (-> message = MSB message .. LSB message)
randSrc := make([]byte, 32+len(message))
copy(randSrc, privKey.randSrc[:])
copy(randSrc[32:], message)
// randBytes = H(randSrc)
blindingFactorBytes := blake2b.Sum512(randSrc[:]) // TODO ensures that the hash used to build the key and the one used here is the same
blindingFactorBigInt.SetBytes(blindingFactorBytes[:sizeFr])
// compute R = randScalar*Base
res.R.ScalarMultiplication(&curveParams.Base, &blindingFactorBigInt)
if !res.R.IsOnCurve() {
return nil, errNotOnCurve
}
// compute H(R, A, M), all parameters in data are in Montgomery form
hFunc.Reset()
resRX := res.R.X.Bytes()
resRY := res.R.Y.Bytes()
resAX := privKey.PublicKey.A.X.Bytes()
resAY := privKey.PublicKey.A.Y.Bytes()
toWrite := [][]byte{resRX[:], resRY[:], resAX[:], resAY[:], message}
for _, bytes := range toWrite {
if _, err := hFunc.Write(bytes); err != nil {
return nil, err
}
}
var hramInt big.Int
hramBin := hFunc.Sum(nil)
hramInt.SetBytes(hramBin)
// Compute s = randScalarInt + H(R,A,M)*S
// going with big int to do ops mod curve order
var bscalar, bs big.Int
bscalar.SetBytes(privKey.scalar[:])
bs.Mul(&hramInt, &bscalar).
Add(&bs, &blindingFactorBigInt).
Mod(&bs, &curveParams.Order)
sb := bs.Bytes()
if len(sb) < sizeFr {
offset := make([]byte, sizeFr-len(sb))
sb = append(offset, sb...)
}
copy(res.S[:], sb[:])
return res.Bytes(), nil
}
// Verify verifies an eddsa signature
func (pub *PublicKey) Verify(sigBin, message []byte, hFunc hash.Hash) (bool, error) {
// hFunc cannot be nil.
// We need a hash function for the Fiat-Shamir.
if hFunc == nil {
return false, errHashNeeded
}
curveParams := twistededwards.GetEdwardsCurve()
// verify that pubKey and R are on the curve
if !pub.A.IsOnCurve() {
return false, errNotOnCurve
}
// Deserialize the signature
var sig Signature
if _, err := sig.SetBytes(sigBin); err != nil {
return false, err
}
// compute H(R, A, M), all parameters in data are in Montgomery form
hFunc.Reset()
sigRX := sig.R.X.Bytes()
sigRY := sig.R.Y.Bytes()
sigAX := pub.A.X.Bytes()
sigAY := pub.A.Y.Bytes()
toWrite := [][]byte{sigRX[:], sigRY[:], sigAX[:], sigAY[:], message}
for _, bytes := range toWrite {
if _, err := hFunc.Write(bytes); err != nil {
return false, err
}
}
var hramInt big.Int
hramBin := hFunc.Sum(nil)
hramInt.SetBytes(hramBin)
// lhs = cofactor*S*Base
var lhs twistededwards.PointAffine
var bCofactor, bs big.Int
curveParams.Cofactor.BigInt(&bCofactor)
bs.SetBytes(sig.S[:])
lhs.ScalarMultiplication(&curveParams.Base, &bs).
ScalarMultiplication(&lhs, &bCofactor)
if !lhs.IsOnCurve() {
return false, errNotOnCurve
}
// rhs = cofactor*(R + H(R,A,M)*A)
var rhs twistededwards.PointAffine
rhs.ScalarMultiplication(&pub.A, &hramInt).
Add(&rhs, &sig.R).
ScalarMultiplication(&rhs, &bCofactor)
if !rhs.IsOnCurve() {
return false, errNotOnCurve
}
// verifies that cofactor*S*Base=cofactor*(R + H(R,A,M)*A)
if !lhs.X.Equal(&rhs.X) || !lhs.Y.Equal(&rhs.Y) {
return false, nil
}
return true, nil
}