-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathsimulation.py
206 lines (178 loc) · 7.1 KB
/
simulation.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
# -*- encoding: utf-8 -*-
# -------------------------------------------------------------------------------
# Copyright (c) 2014 Vincent Gauthier Telecom SudParis.
#
# Permission is hereby granted, free of charge, to any person obtaining
# a copy of this software and associated documentation files (the
# "Software"), to deal in the Software without restriction, including
# without limitation the rights to use, copy, modify, merge, publish,
# distribute, sublicense, and/or sell copies of the Software, and to
# permit persons to whom the Software is furnished to do so, subject to
# the following conditions:
#
# The above copyright notice and this permission notice shall be included
# in all copies or substantial portions of the Software.
#
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
# EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
# MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
# IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY
# CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
# TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
# SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
# -------------------------------------------------------------------------------
__author__ = """\n""".join(['Vincent Gauthier <vgauthier@luxbulb.org>'])
#
# Imports
#
import os
import numpy as np
import argparse
from progressbar import ProgressBar, Percentage, RotatingMarker, ETA, Bar
#
# Custom imports
#
from tau_leap import stoc_eqs
from utils import *
import properties
###############################################################################
#
# Function rate_of_return
#
###############################################################################
def rate_of_return(dim, rate):
rho = np.zeros((dim, dim))
for i in xrange(dim):
for j in xrange(dim):
if i != j:
rho[i, j] = rate
return rho
###############################################################################
#
# MAIN FUNCTION THAT RUN THE SIMULATION
#
###############################################################################
def run_simumation(N0, dim, tau, beta, sigma, nu, rho, total_population, simulation_end_time, initialInfectedCommunity):
# Steps
steps = int(simulation_end_time * (1.0 / tau))
# Compute the initial population distribution
N = compute_population_at_equilibrium(
N0, dim, sigma, nu, rho, total_population)
print 'average population per cellid: ', np.sum(N, axis=0)
#
# init the progress bar
#
widgets = ['Simulation: ', Percentage(), ' ', Bar(marker=RotatingMarker()),
' ', ETA()]
pbar = ProgressBar(widgets=widgets, maxval=steps).start()
#
#
#
# Inititial Population in each States
S = N.copy()
I = np.zeros((dim, dim))
R = np.zeros((dim, dim))
# Infect some nodes
initital_infection = 100.0
S[initialInfectedCommunity, initialInfectedCommunity] = S[
initialInfectedCommunity, initialInfectedCommunity] - initital_infection
I[initialInfectedCommunity, initialInfectedCommunity] = initital_infection
# Stack the differents S.I.R. variables in one vector
Y = S.reshape(dim * dim).tolist()
Y = np.append(Y, I.reshape(dim * dim).tolist())
Y = np.append(Y, R.reshape(dim * dim).tolist())
Sr = []
Ir = []
Rr = []
InfectionMatrix = np.zeros((steps, 255))
for step in xrange(steps):
Ytemp = stoc_eqs(Y, tau, beta, gamma, sigma, nu, rho, dim)
Ytemp = Ytemp.reshape((3, dim * dim))
Stemp = Ytemp[0].reshape((dim, dim))
Itemp = Ytemp[1].reshape((dim, dim))
Rtemp = Ytemp[2].reshape((dim, dim))
Sr.append(Stemp.sum())
Ir.append(Itemp.sum())
Rr.append(Rtemp.sum())
InfectionMatrix[step, :] = Itemp.sum(axis=0)
Y = Ytemp
pbar.update(step)
pbar.finish()
return Sr, Ir, Rr, InfectionMatrix
if __name__ == '__main__':
#
# Parse argument
#
parser = argparse.ArgumentParser(
description='Process SIR simulation with nolatent states.')
parser.add_argument('--output', help='output directory', required=True)
parser.add_argument(
'--duration', type=int, help='simulation duration in days', required=True)
parser.add_argument(
'--tau', type=float, help='simulation step (fraction of day)', default=1.0 / 5)
parser.add_argument(
'--sim-id', type=int, help='simulation step (fraction of day)', default=1.0 / 5)
parser.add_argument(
'--cell-id', type=int, help='initial cellID', default=0)
parser.add_argument(
'--gamma', type=float, help='recovery rate', default=1.0 / 3.0)
args = parser.parse_args()
# Simualtion parameters
simulation_end_time = float(args.duration)
tau = float(args.tau)
simulation_id = int(args.sim_id)
cell_id = int(args.cell_id)
gamma = float(args.gamma)
cell_id = args.cell_id
argsdict = vars(args)
conditions_mets = (
args.output and
args.tau and
args.duration and
args.sim_id)
if conditions_mets:
output_dir = argsdict['output']
if output_dir.endswith('\\'):
output_dir = output_dir[:-1]
# if output dire doesn' extist create it
if not os.path.exists(output_dir):
os.makedirs(output_dir)
#
# Start Simulation
#
beta = get_beta(properties.densitySubPrefectureCensusData,
properties.polygonPointsSubPrefectureCensusData,
properties.subPrefectureNumbering,
properties.r,
properties.c)
with np.errstate(divide='ignore'):
(nu, sigma) = get_transition_probability(
properties.transitionProbability)
rho = rate_of_return(properties.dim, properties.return_rate)
N0 = initial_population(properties.areaSubPrefectureCensusData,
properties.densitySubPrefectureCensusData,
properties.polygonPointsSubPrefectureCensusData,
properties.subPrefectureNumbering,
properties.total_population)
#
# Simulation
#
S, I, R, InfectionMatrix = run_simumation(N0,
properties.dim,
tau,
beta,
sigma,
nu,
rho,
properties.total_population,
simulation_end_time,
cell_id
)
A = InfectionMatrix.T
save_results(S, I, R, A, output_dir + '/' + str(simulation_id))
#####################
#
# end Simulation
#
else:
parser.print_help()