forked from fumin/ntm
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathntm.go
425 lines (360 loc) · 11.4 KB
/
ntm.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
/*
Package ntm implements the Neural Turing Machine architecture as described in A.Graves, G. Wayne, and I. Danihelka. arXiv preprint arXiv:1410.5401, 2014.
Using this package along its subpackages, the "copy", "repeatcopy" and "ngram" tasks mentioned in the paper were verified.
For each of these tasks, the successfully trained models are saved under the filenames "seedA_B",
where A is the number indicating the seed provided to rand.Seed in the training process, and B is the iteration number in which the trained weights converged.
*/
package ntm
import (
"math"
"github.com/gonum/blas/blas64"
)
// A Head is a read write head on a memory bank.
// It carriess information that is required to operate on a memory bank according to the NTM architecture.
type Head struct {
vals []float64
grads []float64
Wtm1 *refocus // the weights at time t-1
M int // size of a row in the memory
}
// NewHead creates a new memory head.
func NewHead(m int) *Head {
h := Head{
M: m,
}
return &h
}
// EraseVal returns the erase vector of a memory head.
func (h *Head) EraseVal() []float64 {
return h.vals[0:h.M]
}
func (h *Head) EraseGrad() []float64 {
return h.grads[0:h.M]
}
// AddVal returns the add vector of a memory head.
func (h *Head) AddVal() []float64 {
return h.vals[h.M : 2*h.M]
}
func (h *Head) AddGrad() []float64 {
return h.grads[h.M : 2*h.M]
}
// KVal: K returns a head's key vector, which is the target data in the content addressing step.
func (h *Head) KVal() []float64 {
return h.vals[2*h.M : 3*h.M]
}
func (h *Head) KGrad() []float64 {
return h.grads[2*h.M : 3*h.M]
}
// BetaVal: Beta returns the key strength of a content addressing step.
func (h *Head) BetaVal() *float64 {
return &h.vals[3*h.M]
}
func (h *Head) BetaGrad() *float64 {
return &h.grads[3*h.M]
}
// GVal: G returns the degree in which we want to choose content-addressing over location-based-addressing.
func (h *Head) GVal() *float64 {
return &h.vals[3*h.M+1]
}
func (h *Head) GGrad() *float64 {
return &h.grads[3*h.M+1]
}
// SVal: S returns a value indicating how much the weightings are rotated in a location-based-addressing step.
func (h *Head) SVal() *float64 {
return &h.vals[3*h.M+2]
}
func (h *Head) SGrad() *float64 {
return &h.grads[3*h.M+2]
}
// GammaVal: Gamma returns the degree in which the addressing weights are sharpened.
func (h *Head) GammaVal() *float64 {
return &h.vals[3*h.M+3]
}
func (h *Head) GammaGrad() *float64 {
return &h.grads[3*h.M+3]
}
func headUnitsLen(m int) int {
return 3*m + 4
}
// The Controller interface is implemented by NTM controller networks that wish to operate with memory banks in a NTM.
type Controller interface {
// Heads returns the emitted memory heads.
Heads() []*Head
// YVal returns the values of the output of the Controller.
YVal() []float64
// YVal returns the gradients of the output of the Controller.
YGrad() []float64
// Forward creates a new Controller which shares the same internal weights,
// and performs a forward pass whose results can be retrived by Heads and Y.
Forward(reads []*memRead, x []float64) Controller
// Backward performs a backward pass,
// assuming the gradients on Heads and Y are already set.
Backward()
// Wtm1BiasVal returns the values of the bias of the previous weight.
// The layout is |-- 1st head weights (size memoryN) --|-- 2nd head --|-- ... --|
// The length of the returned slice is numHeads * memoryN.
Wtm1BiasVal() []float64
Wtm1BiasGrad() []float64
// M1mt1BiasVal returns the values of the bias of the memory bank.
// The returned matrix is in row major order.
Mtm1BiasVal() []float64
Mtm1BiasGrad() []float64
// WeightsVal returns the values of all weights.
WeightsVal() []float64
// WeightsGrad returns the gradients of all weights.
WeightsGrad() []float64
// WeightsDesc returns the descriptions of a weight.
WeightsDesc(i int) string
// NumHeads returns the number of memory heads of a controller.
NumHeads() int
// MemoryN returns the number of vectors of the memory bank of a controller.
MemoryN() int
// MemoryM returns the size of a vector in the memory bank of a controller.
MemoryM() int
}
// A NTM is a neural turing machine as described in A.Graves, G. Wayne, and I. Danihelka. arXiv preprint arXiv:1410.5401, 2014.
type NTM struct {
Controller Controller
memOp *memOp
}
// NewNTM creates a new NTM.
func NewNTM(old *NTM, x []float64) *NTM {
m := NTM{
Controller: old.Controller.Forward(old.memOp.R, x),
}
for i := 0; i < len(m.Controller.Heads()); i++ {
m.Controller.Heads()[i].Wtm1 = old.memOp.W[i]
}
m.memOp = newMemOp(m.Controller.Heads(), old.memOp.WM)
return &m
}
func (m *NTM) backward() {
m.memOp.Backward()
m.Controller.Backward()
}
// ForwardBackward computes a controller's prediction and gradients with respect to the given ground truth input and output values.
func ForwardBackward(c Controller, in [][]float64, out DensityModel) []*NTM {
weights := c.WeightsGrad()
for i := range weights {
weights[i] = 0
}
// Set the empty NTM's memory and head weights to their bias values.
empty, reads, cas := makeEmptyNTM(c)
machines := make([]*NTM, len(in))
// Backpropagation through time.
machines[0] = NewNTM(empty, in[0])
for t := 1; t < len(in); t++ {
machines[t] = NewNTM(machines[t-1], in[t])
}
for t := len(in) - 1; t >= 0; t-- {
m := machines[t]
out.Model(t, m.Controller.YVal(), m.Controller.YGrad())
m.backward()
}
// Compute gradients for the bias values of the initial memory and weights.
for i := range reads {
reads[i].Backward()
for j := range reads[i].W.TopGrad {
cas[i].Top[j].Grad += reads[i].W.TopGrad[j]
}
cas[i].Backward()
}
// Copy gradients to the controller.
cwtm1 := c.Wtm1BiasGrad()
for i := range cas {
for j, bs := range cas[i].Units {
cwtm1[i*c.MemoryN()+j] = bs.Top.Grad
}
}
return machines
}
// MakeEmptyNTM makes a NTM with its memory and head weights set to their bias values, based on the controller.
func MakeEmptyNTM(c Controller) *NTM {
machine, _, _ := makeEmptyNTM(c)
return machine
}
func makeEmptyNTM(c Controller) (*NTM, []*memRead, []*contentAddressing) {
cwtm1 := c.Wtm1BiasVal()
unws := make([][]*betaSimilarity, c.NumHeads())
for i := range unws {
unws[i] = make([]*betaSimilarity, c.MemoryN())
for j := range unws[i] {
v := cwtm1[i*c.MemoryN()+j]
unws[i][j] = &betaSimilarity{Top: Unit{Val: v}}
}
}
mtm1 := &writtenMemory{
N: c.MemoryN(),
TopVal: c.Mtm1BiasVal(),
TopGrad: c.Mtm1BiasGrad(),
}
wtm1s := make([]*refocus, c.NumHeads())
reads := make([]*memRead, c.NumHeads())
cas := make([]*contentAddressing, c.NumHeads())
for i := range reads {
cas[i] = newContentAddressing(unws[i])
wtm1s[i] = &refocus{
TopVal: make([]float64, c.MemoryN()),
TopGrad: make([]float64, c.MemoryN()),
}
for j := range wtm1s[i].TopVal {
wtm1s[i].TopVal[j] = cas[i].Top[j].Val
}
reads[i] = newMemRead(wtm1s[i], mtm1)
}
empty := &NTM{
Controller: c,
memOp: &memOp{W: wtm1s, R: reads, WM: mtm1},
}
return empty, reads, cas
}
// Predictions returns the predictions of a NTM across time.
func Predictions(machines []*NTM) [][]float64 {
pdts := make([][]float64, len(machines))
for t := range pdts {
pdts[t] = machines[t].Controller.YVal()
}
return pdts
}
// HeadWeights returns the addressing weights of all memory heads across time.
// The top level elements represent each head.
// The second level elements represent every time instant.
func HeadWeights(machines []*NTM) [][][]float64 {
hws := make([][][]float64, len(machines[0].memOp.W))
for i := range hws {
hws[i] = make([][]float64, len(machines))
for t, m := range machines {
hws[i][t] = make([]float64, len(m.memOp.W[i].TopVal))
for j, w := range m.memOp.W[i].TopVal {
hws[i][t][j] = w
}
}
}
return hws
}
// SGDMomentum implements stochastic gradient descent with momentum.
type SGDMomentum struct {
C Controller
PrevD []float64
}
func NewSGDMomentum(c Controller) *SGDMomentum {
s := SGDMomentum{
C: c,
PrevD: make([]float64, len(c.WeightsVal())),
}
return &s
}
func (s *SGDMomentum) Train(x [][]float64, y DensityModel, alpha, mt float64) []*NTM {
machines := ForwardBackward(s.C, x, y)
weights := s.C.WeightsVal()
for i, grad := range s.C.WeightsGrad() {
d := -alpha*grad + mt*s.PrevD[i]
weights[i] += d
s.PrevD[i] = d
}
return machines
}
// RMSProp implements the rmsprop algorithm. The detailed updating equations are given in
// Graves, Alex (2013). Generating sequences with recurrent neural networks. arXiv preprint arXiv:1308.0850.
type RMSProp struct {
C Controller
N []float64
G []float64
D []float64
}
func NewRMSProp(c Controller) *RMSProp {
r := RMSProp{
C: c,
N: make([]float64, len(c.WeightsVal())),
G: make([]float64, len(c.WeightsVal())),
D: make([]float64, len(c.WeightsVal())),
}
return &r
}
func (r *RMSProp) Train(x [][]float64, y DensityModel, a, b, c, d float64) []*NTM {
machines := ForwardBackward(r.C, x, y)
r.update(a, b, c, d)
return machines
}
func (r *RMSProp) update(a, b, c, d float64) {
grad := blas64.Vector{Inc: 1, Data: r.C.WeightsGrad()}
grad2 := blas64.Vector{Inc: 1, Data: make([]float64, len(grad.Data))}
for i, w := range grad.Data {
grad2.Data[i] = w * w
}
n := blas64.Vector{Inc: 1, Data: r.N}
blas64.Scal(len(n.Data), a, n)
blas64.Axpy(len(n.Data), 1-a, grad2, n)
g := blas64.Vector{Inc: 1, Data: r.G}
blas64.Scal(len(g.Data), a, g)
blas64.Axpy(len(g.Data), 1-a, grad, g)
rms := blas64.Vector{Inc: 1, Data: make([]float64, len(r.D))}
for i, g := range r.G {
rms.Data[i] = grad.Data[i] / math.Sqrt(r.N[i]-g*g+d)
}
rD := blas64.Vector{Inc: 1, Data: r.D}
blas64.Scal(len(rD.Data), b, rD)
blas64.Axpy(len(rD.Data), -c, rms, rD)
val := blas64.Vector{Inc: 1, Data: r.C.WeightsVal()}
blas64.Axpy(len(rD.Data), 1, rD, val)
}
// A DensityModel is a model of how the last layer of a network gets transformed into the final output.
type DensityModel interface {
// Model sets the value and gradient of Units of the output layer.
Model(t int, yHVal []float64, yHGrad []float64)
// Loss is the loss definition of this model.
Loss(output [][]float64) float64
}
// A LogisticModel models its outputs as logistic sigmoids.
type LogisticModel struct {
// Y is the strength of the output unit at each time step.
Y [][]float64
}
// Model sets the values and gradients of the output units.
func (m *LogisticModel) Model(t int, yHVal []float64, yHGrad []float64) {
ys := m.Y[t]
for i, yhv := range yHVal {
newYhv := Sigmoid(yhv)
yHVal[i] = newYhv
yHGrad[i] = newYhv - ys[i]
}
}
// Loss returns the cross entropy loss.
func (m *LogisticModel) Loss(output [][]float64) float64 {
var l float64 = 0
for t, yh := range output {
for i := range yh {
p := output[t][i]
y := m.Y[t][i]
l += y*math.Log(p) + (1-y)*math.Log(1-p)
}
}
return -l
}
// A MultinomialModel models its outputs as following the multinomial distribution.
type MultinomialModel struct {
// Y is the class of the output at each time step.
Y []int
}
// Model sets the values and gradients of the output units.
func (m *MultinomialModel) Model(t int, yHVal []float64, yHGrad []float64) {
var sum float64 = 0
for i, yhv := range yHVal {
v := math.Exp(yhv)
yHVal[i] = v
sum += v
}
k := m.Y[t]
for i, yhv := range yHVal {
newYhv := yhv / sum
yHVal[i] = newYhv
yHGrad[i] = newYhv - delta(i, k)
}
}
func (m *MultinomialModel) Loss(output [][]float64) float64 {
var l float64 = 0
for t, yh := range output {
l += math.Log(yh[m.Y[t]])
}
return -l
}