forked from fumin/ntm
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcntl1_test.go
221 lines (203 loc) · 5.43 KB
/
cntl1_test.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
package ntm
import (
"math"
"math/rand"
"testing"
)
func TestLogisticModel(t *testing.T) {
times := 9
x := makeTensor2(times, 4)
for i := 0; i < len(x); i++ {
for j := 0; j < len(x[i]); j++ {
x[i][j] = rand.Float64()
}
}
y := makeTensor2(times, 4)
for i := 0; i < len(y); i++ {
for j := 0; j < len(y[i]); j++ {
y[i][j] = rand.Float64()
}
}
n := 3
m := 2
h1Size := 3
numHeads := 2
c := NewEmptyController1(len(x[0]), len(y[0]), h1Size, numHeads, n, m)
weights := c.WeightsVal()
for i := range weights {
weights[i] = 2 * rand.Float64()
}
model := &LogisticModel{Y: y}
ForwardBackward(c, x, model)
checkGradients(t, c, Controller1Forward, x, model)
}
func TestMultinomialModel(t *testing.T) {
times := 9
x := makeTensor2(times, 4)
for i := 0; i < len(x); i++ {
for j := 0; j < len(x[i]); j++ {
x[i][j] = rand.Float64()
}
}
outputSize := 4
y := make([]int, times)
for i := range y {
y[i] = rand.Intn(outputSize)
}
n := 3
m := 2
h1Size := 3
numHeads := 2
c := NewEmptyController1(len(x[0]), outputSize, h1Size, numHeads, n, m)
weights := c.WeightsVal()
for i := range weights {
weights[i] = 2 * rand.Float64()
}
model := &MultinomialModel{Y: y}
ForwardBackward(c, x, model)
checkGradients(t, c, Controller1Forward, x, model)
}
// A ControllerForward is a ground truth implementation of the forward pass of a controller.
type ControllerForward func(c Controller, reads [][]float64, x []float64) (prediction []float64, heads []*Head)
func Controller1Forward(c1 Controller, reads [][]float64, x []float64) ([]float64, []*Head) {
c := c1.(*controller1)
readX := make([]float64, 0)
for _, read := range reads {
for _, r := range read {
readX = append(readX, r)
}
}
for _, xi := range x {
readX = append(readX, xi)
}
readX = append(readX, 1)
h1 := make([]float64, c.h1Size)
wh1 := c.wh1Val()
for i := range h1 {
var v float64 = 0
for j, rx := range readX {
v += wh1.Data[i*wh1.Cols+j] * rx
}
h1[i] = Sigmoid(v)
}
out := make([]float64, c.wyRows())
wy := c.wyVal()
h1 = append(h1, 1)
for i := range out {
var v float64 = 0
for j, h := range h1 {
v += wy.Data[i*wy.Cols+j] * h
}
out[i] = v
}
prediction := make([]float64, c.ySize)
for i := range prediction {
prediction[i] = out[i]
}
heads := make([]*Head, c.numHeads)
for i := range heads {
heads[i] = NewHead(c.memoryM)
hul := headUnitsLen(c.MemoryM())
heads[i].vals = make([]float64, hul)
heads[i].grads = make([]float64, hul)
for j := range heads[i].vals {
heads[i].vals[j] += out[c.ySize+i*hul+j]
}
}
return prediction, heads
}
func loss(c Controller, forward ControllerForward, in [][]float64, model DensityModel) float64 {
// Initialize memory as in the function ForwardBackward
mem := makeTensorUnit2(c.MemoryN(), c.MemoryM())
for i := range mem {
for j := range mem[i] {
mem[i][j].Val = c.Mtm1BiasVal()[i*c.MemoryM()+j]
}
}
wtm1s := make([]*refocus, c.NumHeads())
for i := range wtm1s {
wtm1s[i] = &refocus{
TopVal: make([]float64, c.MemoryN()),
TopGrad: make([]float64, c.MemoryN()),
}
bs := c.Wtm1BiasVal()[i*c.MemoryN() : (i+1)*c.MemoryN()]
var sum float64 = 0
for j, b := range bs {
wtm1s[i].TopVal[j] = math.Exp(b)
sum += wtm1s[i].TopVal[j]
}
for j := range bs {
wtm1s[i].TopVal[j] = wtm1s[i].TopVal[j] / sum
}
}
reads := makeTensor2(c.NumHeads(), c.MemoryM())
for i := 0; i < len(reads); i++ {
for j := 0; j < len(reads[i]); j++ {
var v float64 = 0
for k := 0; k < len(mem); k++ {
v += wtm1s[i].TopVal[k] * mem[k][j].Val
}
reads[i][j] = v
}
}
prediction := make([][]float64, len(in))
var heads []*Head
for t := 0; t < len(in); t++ {
prediction[t], heads = forward(c, reads, in[t])
prediction[t] = computeDensity(t, prediction[t], model)
for i := 0; i < len(heads); i++ {
heads[i].Wtm1 = wtm1s[i]
}
wsFloat64, readsFloat64, memFloat64 := doAddressing(heads, mem)
wtm1s = transformWSFloat64(wsFloat64)
reads = readsFloat64
mem = transformMemFloat64(memFloat64)
}
return model.Loss(prediction)
}
func computeDensity(timestep int, pred []float64, model DensityModel) []float64 {
den := make([]float64, len(pred))
copy(den, pred)
model.Model(timestep, den, make([]float64, len(pred)))
return den
}
func checkGradients(t *testing.T, c Controller, forward ControllerForward, in [][]float64, model DensityModel) {
lx := loss(c, forward, in, model)
for i, x := range c.WeightsVal() {
h := machineEpsilonSqrt * math.Max(math.Abs(x), 1)
xph := x + h
c.WeightsVal()[i] = xph
lxph := loss(c, forward, in, model)
c.WeightsVal()[i] = x
grad := (lxph - lx) / (xph - x)
wGrad := c.WeightsGrad()[i]
tag := c.WeightsDesc(i)
if math.IsNaN(grad) || math.Abs(grad-wGrad) > 1e-5 {
t.Errorf("wrong %s gradient expected %f, got %f", tag, grad, wGrad)
} else {
t.Logf("OK %s gradient expected %f, got %f", tag, grad, wGrad)
}
}
}
func transformMemFloat64(memFloat64 [][]float64) [][]Unit {
mem := makeTensorUnit2(len(memFloat64), len(memFloat64[0]))
for i := 0; i < len(mem); i++ {
for j := 0; j < len(mem[0]); j++ {
mem[i][j].Val = memFloat64[i][j]
}
}
return mem
}
func transformWSFloat64(wsFloat64 [][]float64) []*refocus {
wtm1s := make([]*refocus, len(wsFloat64))
for i := 0; i < len(wtm1s); i++ {
wtm1s[i] = &refocus{
TopVal: make([]float64, len(wsFloat64[i])),
TopGrad: make([]float64, len(wsFloat64[i])),
}
for j := 0; j < len(wtm1s[i].TopVal); j++ {
wtm1s[i].TopVal[j] = wsFloat64[i][j]
}
}
return wtm1s
}