forked from LooKing9218/UIOS
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathThresholding.py
90 lines (61 loc) · 2.46 KB
/
Thresholding.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
import tqdm
import torch
from torch.utils.data import DataLoader
from utils.config import DefaultConfig
from models.net_builder import net_builder
from dataprepare.dataloader import DatasetCFP
from torch.nn import functional as F
from sklearn import metrics
def val(val_dataloader, model, args, mode, device):
print('\n')
print('====== Start {} ======!'.format(mode))
model.eval()
u_list = []
u_label_list = []
tbar = tqdm.tqdm(val_dataloader, desc='\r')
with torch.no_grad():
for i, img_data_list in enumerate(tbar):
Fundus_img = img_data_list[0].to(device)
cls_label = img_data_list[1].long().to(device)
pred = model.forward(Fundus_img)
evidences = [F.softplus(pred)]
alpha = dict()
alpha[0] = evidences[0] + 1
S = torch.sum(alpha[0], dim=1, keepdim=True)
E = alpha[0] - 1
b = E / (S.expand(E.shape))
u = args.num_classes / S
un_gt = 1 - torch.eq(b.argmax(dim=-1), cls_label).float()
data_bach = pred.size(0)
for idx in range(data_bach):
u_list.append(u.cpu()[idx].numpy())
u_label_list.append(un_gt.cpu()[idx].numpy())
return u_list, u_label_list
def main(args=None):
args.net_work = "ResUnNet50"
args.trained_model_path = './Trained/UIOS.pth.tar'
# bulid model
device = torch.device('cuda:{}'.format(args.cuda))
args.device = device
model = net_builder(args.net_work, args.num_classes).to(device)
print('Model have been loaded!,you chose the ' + args.net_work + '!')
# load trained model for test
print("=> loading trained model '{}'".format(args.trained_model_path))
checkpoint = torch.load(
args.trained_model_path)
model.load_state_dict(checkpoint['state_dict'])
print('Done!')
test_loader = DataLoader(DatasetCFP(
root=args.root,
mode='test',
data_file=args.val_file,
),
batch_size=args.batch_size, shuffle=False, pin_memory=True)
u_list, u_label_list = val(test_loader, model, args, mode="Validation", device=device)
fpr_Pri, tpr_Pri, thresh = metrics.roc_curve(u_label_list, u_list)
max_j = max(zip(fpr_Pri, tpr_Pri), key=lambda x: 2*x[1] - x[0])
pred_thresh = thresh[list(zip(fpr_Pri, tpr_Pri)).index(max_j)]
print("opt_pred ===== {}".format(pred_thresh))
if __name__ == '__main__':
args = DefaultConfig()
main(args=args)