-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathtrainer_swapclr.py
141 lines (113 loc) · 6.19 KB
/
trainer_swapclr.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
import logging
import os
import sys
import random
import torch
import torch.nn.functional as F
from torch.cuda.amp import GradScaler, autocast
from torch.utils.tensorboard import SummaryWriter
from tqdm import tqdm
from utils import save_config_file, accuracy, save_checkpoint
torch.manual_seed(0)
class SwapCLR(object):
def __init__(self, *args, **kwargs):
self.args = kwargs['args']
self.model = kwargs['model'].to(self.args.device)
self.optimizer = kwargs['optimizer']
self.scheduler = kwargs['scheduler']
self.criterion = torch.nn.CrossEntropyLoss().to(self.args.device)
import socket
from datetime import datetime
current_time = datetime.now().strftime('%b%d_%H-%M-%S')
log_dir = os.path.join(
'runs', current_time + '_' + socket.gethostname() + self.args.comment)
dir2log = f'/mnt/d/Data/Yuxuan/logging/{self.args.training_mode}/{self.args.dataset_name}/{log_dir}'
os.makedirs(dir2log, exist_ok=True)
self.writer = SummaryWriter(log_dir=dir2log)
logging.basicConfig(filename=os.path.join(self.writer.log_dir, 'training.log'), level=logging.DEBUG)
def info_nce_loss(self, features):
labels = torch.cat([torch.arange(self.args.batch_size) for i in range(self.args.n_views)], dim=0)
labels = (labels.unsqueeze(0) == labels.unsqueeze(1)).float()
labels = labels.to(self.args.device)
features = F.normalize(features, dim=1)
similarity_matrix = torch.matmul(features, features.T)
# discard the main diagonal from both: labels and similarities matrix
mask = torch.eye(labels.shape[0], dtype=torch.bool).to(self.args.device)
labels = labels[~mask].view(labels.shape[0], -1)
similarity_matrix = similarity_matrix[~mask].view(similarity_matrix.shape[0], -1)
# select and combine multiple positives
positives = similarity_matrix[labels.bool()].view(labels.shape[0], -1)
# select only the negatives the negatives
negatives = similarity_matrix[~labels.bool()].view(similarity_matrix.shape[0], -1)
logits = torch.cat([positives, negatives], dim=1)
labels = torch.zeros(logits.shape[0], dtype=torch.long).to(self.args.device)
logits = logits / self.args.temperature
return logits, labels
def train(self, train_loader):
scaler = GradScaler(enabled=self.args.fp16_precision)
# save config file
save_config_file(self.writer.log_dir, self.args)
n_iter = 0
best_acc = 0
logging.getLogger('numba').setLevel(logging.WARNING)
logging.info(f"Start SimCLR training for {self.args.epochs} epochs.")
logging.info(f"training on {self.args.device}")
logging.info(f"Training with gpu: {self.args.disable_cuda}.")
logging.info(f"Training with {self.args.arch}")
logging.info(f"Using dataset {self.args.dataset_name}")
logging.info(f"Batch size: {self.args.batch_size}")
logging.info(f"Initial learning rate: {self.args.lr}")
logging.info(f"Time augmentation: {self.args.time_aug}")
if self.args.time_aug:
logging.info(f"With mode {self.args.distr_mode} temporal interval sampler")
for epoch_counter in range(self.args.epochs):
for Sample in tqdm(train_loader):
Anchor = Sample['Anchor']
Positive = Sample['Positive']
NAnchor = Sample['NAnchor']
NPositive = Sample['NPositive']
data = torch.cat([Anchor, NAnchor, Positive, NPositive], dim=0).to(self.args.device)
with autocast(enabled=self.args.fp16_precision):
features = self.model(x=data)
# logits, labels = self.info_nce_loss_withmask(features, features_lnd)
# loss = self.criterion(logits, labels)
logits, labels = self.info_nce_loss(features)
loss = self.criterion(logits, labels)
self.optimizer.zero_grad()
scaler.scale(loss).backward()
scaler.step(self.optimizer)
scaler.update()
if n_iter % self.args.log_every_n_steps == 0:
self.writer.add_scalar('loss', loss, global_step=n_iter)
top1, top5 = accuracy(logits, labels, topk=(1, 5))
self.writer.add_scalars('Accuracy',
{'acc/top1':top1[0],
'acc/top5':top5[0]}, global_step=n_iter)
self.writer.add_scalar('learning_rate', self.scheduler.get_lr()[0], global_step=n_iter)
n_iter += 1
###############################################################################################
# warmup for the first 10 epochs
if epoch_counter >= 10:
self.scheduler.step(epoch_counter)
logging.debug(f"Epoch: {epoch_counter}\tLoss: {loss}\tTop1 accuracy: {top1[0]}\tTop5 accuracy: {top5[0]}")
if epoch_counter%10 == 0 and top1[0] > 90:
checkpoint_name = 'checkpoint_{:04d}.pth.tar'.format(epoch_counter)
save_checkpoint({
'epoch': epoch_counter,
'arch': self.args.arch,
'state_dict': self.model.state_dict(),
'optimizer': self.optimizer.state_dict(),
'scheduler': self.scheduler,
}, is_best=False, filename=os.path.join(self.writer.log_dir, checkpoint_name))
if top1[0] >= best_acc:
best_acc = top1[0]
checkpoint_name = 'checkpoint_best.pth.tar'.format(epoch_counter)
save_checkpoint({
'epoch': epoch_counter,
'arch': self.args.arch,
'state_dict': self.model.state_dict(),
'optimizer': self.optimizer.state_dict(),
'scheduler': self.scheduler,
}, is_best=False, filename=os.path.join(self.writer.log_dir, checkpoint_name))
logging.info("Training has finished.")
logging.info(f"Model checkpoint and metadata has been saved at {self.writer.log_dir}.")