-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdemo.py
91 lines (87 loc) · 3.85 KB
/
demo.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
# -- coding: utf-8 --`
import argparse
import os
# engine
from stable_diffusion_engine import StableDiffusionEngine
# scheduler
from diffusers import DDIMScheduler, LMSDiscreteScheduler, PNDMScheduler
# utils
import cv2
import numpy as np
def main(args):
if args.seed is not None:
np.random.seed(args.seed)
if args.init_image is None:
if args.scheduler.upper() == "LMS":
scheduler = LMSDiscreteScheduler(
beta_start=args.beta_start,
beta_end=args.beta_end,
beta_schedule=args.beta_schedule,
tensor_format="np"
)
elif args.scheduler.upper() == "DDIM":
scheduler = DDIMScheduler(
beta_start=args.beta_start,
beta_end=args.beta_end,
beta_schedule=args.beta_schedule,
clip_sample=False,
set_alpha_to_one=False,
tensor_format="np"
)
else:
raise ValueError("Scheduler must be one of: [LMS, DDIM]")
else:
scheduler = PNDMScheduler(
beta_start=args.beta_start,
beta_end=args.beta_end,
beta_schedule=args.beta_schedule,
skip_prk_steps = True,
tensor_format="np"
)
engine = StableDiffusionEngine(
model = args.model,
scheduler = scheduler,
tokenizer = args.tokenizer
)
engine(
prompt = args.prompt,
output = args.output,
init_image = None if args.init_image is None else cv2.imread(args.init_image),
mask = None if args.mask is None else cv2.imread(args.mask, 0),
strength = args.strength,
num_inference_steps = args.num_inference_steps,
guidance_scale = args.guidance_scale,
eta = args.eta,
unprompt = args.unprompt
)
if __name__ == "__main__":
parser = argparse.ArgumentParser()
# pipeline configure
parser.add_argument("--model", type=str, default="bes-dev/stable-diffusion-v1-4-openvino", help="model name")
# randomizer params
parser.add_argument("--seed", type=int, default=None, help="random seed for generating consistent images per prompt")
# scheduler params
parser.add_argument("--beta-start", type=float, default=0.00085, help="LMSDiscreteScheduler::beta_start")
parser.add_argument("--beta-end", type=float, default=0.012, help="LMSDiscreteScheduler::beta_end")
parser.add_argument("--beta-schedule", type=str, default="scaled_linear", help="LMSDiscreteScheduler::beta_schedule")
# diffusion params
parser.add_argument("--num-inference-steps", type=int, default=32, help="num inference steps")
parser.add_argument("--guidance-scale", type=float, default=7.5, help="guidance scale")
parser.add_argument("--eta", type=float, default=0.0, help="eta")
# tokenizer
parser.add_argument("--tokenizer", type=str, default="openai/clip-vit-large-patch14", help="tokenizer")
# prompt
parser.add_argument("--prompt", type=str, default="Street-art painting of Emilia Clarke in style of Banksy, photorealism", help="prompt")
# img2img params
parser.add_argument("--init-image", type=str, default=None, help="path to initial image")
parser.add_argument("--strength", type=float, default=0.5, help="how strong the initial image should be noised [0.0, 1.0]")
# inpainting
parser.add_argument("--mask", type=str, default=None, help="mask of the region to inpaint on the initial image")
# output name
parser.add_argument("--output", type=str, default="output.png", help="output image name, supports {step} placeholder")
# unprompt
parser.add_argument("--unprompt", type=str, default="", help="negative prompt")
# scheduler
parser.add_argument("--scheduler", type=str, default="LMS", help="scheduler: [LMS, DDIM], will use PNDM for img2img")
args = parser.parse_args()
main(args)