forked from google/ml-fairness-gym
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrunner_lib.py
156 lines (122 loc) · 4.9 KB
/
runner_lib.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
# coding=utf-8
# Copyright 2020 The ML Fairness Gym Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# Lint as: python2, python3
"""A gin-configurable experiment runner for the fairness gym.
For usage, please see runner.py.
"""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from typing import Any, Callable, Dict, Optional, Text, Type
import attr
import core
import run_util
import gin
@gin.configurable
def default_report(
env,
agent,
metric_results):
return {
'environment': {
'name': env.__class__.__name__,
'params': env.initial_params
},
'agent': {
'name': agent.__class__.__name__,
},
'metrics': metric_results,
}
@gin.configurable
def run_simulation(env, agent, metrics, num_steps):
"""Runs a single simulation and returns metrics."""
return run_util.run_simulation(env, agent, metrics, num_steps)
@gin.configurable
def run_stackelberg_simulation(env, agent, metrics, num_steps):
"""Runs a single Stackelberg simulation and returns metrics."""
return run_util.run_stackelberg_simulation(env, agent, metrics, num_steps)
# The type of a simulation function. This is used to annotate the simulation_fn
# attr of Runner.
_SimulationFnType = Callable[
[core.FairnessEnv, core.Agent, Dict[Text, core.Metric], int],
Dict[Text, Any]]
# The type of a report function. This is used to annotate the report_fn attr
# of Runner.
_ReportFnType = Callable[
[core.FairnessEnv, core.Agent, Dict[Text, Any]],
Dict[Text, Any]]
@gin.configurable
@attr.s
class Runner(object):
"""A gin-configurable class for running experiments."""
# The agent class to use in this experiment.
agent_class = attr.ib() # type: Type[core.Agent]
# A dictionary that maps metric name strings to metric classes that will
# be used in this experiment.
metric_classes = attr.ib() # type: Dict[Text, Type[core.Metric]]
# The number of steps to take in this experiment.
num_steps = attr.ib() # type: int
# The random seed to use with this experiment.
seed = attr.ib() # type: int
# TODO(): Once agent seeding capabilities have been added, add
# an agent seed attribute.
# The environment class to use in this experiment. If None, the environment
# is set through env_callable instead.
env_class = attr.ib(default=None) # type: Optional[Type[core.FairnessEnv]]
# The parameter class that will be used to parameterize the environment. If
# None (default), the environment will be instatiated without parameters
# being passed.
# This attribute is ignored if env_class is None.
env_params_class = attr.ib(default=None) # type: Optional[Type[core.Params]]
# A callable that returns an instantiated environment. This is only used if
# env_class is None. If both env_class is None and env_callable is None, an
# exception is raised.
env_callable = attr.ib(
default=None) # type: Optional[Callable[[], core.FairnessEnv]]
# The function that will be used to perform the experiment. This function
# manages the interaction between agent and environment and the progression
# of the experiment's simulation.
simulation_fn = attr.ib(default=run_simulation) # type: _SimulationFnType
# The function that will be used to report the results of the experiment.
report_fn = attr.ib(default=default_report) # type: _ReportFnType
# TODO(): Add a parallelized parameter-exploring run method.
def run(self):
"""Runs an experiment and returns results."""
# Instantiate environment.
if self.env_class is not None:
if self.env_params_class is not None:
env = self.env_class(self.env_params_class())
else:
env = self.env_class()
elif self.env_callable is not None:
env = self.env_callable()
else:
raise ValueError(
'Both env_class and env_callable are None, so no environment could '
'be instantiated.')
env.seed(self.seed)
# Instantiate metrics.
metrics = {
name: metric_class(env)
for name, metric_class in self.metric_classes.items()}
# Instantiate agent.
agent = self.agent_class(
env.action_space,
None,
env.observation_space)
# Run the simulation and gather metric results.
metric_results = self.simulation_fn(env, agent, metrics, self.num_steps)
# Return a report on the simulation.
return self.report_fn(env, agent, metric_results)