-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathletterboxd_processing.py
327 lines (285 loc) · 12.7 KB
/
letterboxd_processing.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
from bs4 import BeautifulSoup
import streamlit as st
import requests
import pandas as pd
import concurrent.futures
import json
import re
LETTERBOXD_DOMAIN = "https://letterboxd.com"
headers = {
"accept": "application/json",
"Authorization": "Bearer " + st.secrets['tmdb_key']
}
# Function to Transform Stars into Numerical Ratings
def transform_ratings(original_rating):
"""
transforms raw star rating into float value
:param: some_str: actual star rating
:rtype: returns the float representation of the given star(s)
"""
stars = {
"★": 1,
"★★": 2,
"★★★": 3,
"★★★★": 4,
"★★★★★": 5,
"½": 0.5,
"★½": 1.5,
"★★½": 2.5,
"★★★½": 3.5,
"★★★★½": 4.5
}
try:
return stars[original_rating]
except:
return -1
# Function to Get IMDb ID of Movies or TV Shows with Letterboxd URL
def get_imdb_id(letterboxd_url):
respond = {}
resp = requests.get(letterboxd_url)
if resp.status_code != 200:
respond = ("None", letterboxd_url)
return respond
# Extract the IMDb URL
re_match = re.findall(r'href=".+title/(tt\d+)/maindetails"', resp.text)
if not re_match:
respond = ("None", letterboxd_url)
return respond
# return IMDB ID and letterboxd_url as a tuple
respond = (re_match[0], letterboxd_url)
return respond
# Function to send concurrent requests to get IMDB ID with df_film as input
def get_imdb_ids_concurrently(df):
imdb_ids = []
urls = df['letterboxd_link'].tolist()
with concurrent.futures.ThreadPoolExecutor() as executor:
# Submit tasks for each URL
futures = [executor.submit(get_imdb_id, url) for url in urls]
# Retrieve results as they complete
for future in concurrent.futures.as_completed(futures):
imdb_id = future.result()
imdb_ids.append(imdb_id)
return imdb_ids
# Function to Scrape All Watched and Rated Films/TV of user (without IMDb ID)
def scrape_all_films(username):
movies_dict = {}
movies_dict['letterboxd_id'] = []
movies_dict['title'] = []
movies_dict['rating'] = []
movies_dict['liked'] = []
movies_dict['letterboxd_link'] = []
url = LETTERBOXD_DOMAIN + "/" + username + "/films/by/entry-rating/"
url_page = requests.get(url)
soup = BeautifulSoup(url_page.content, 'lxml')
# Check if the page is valid
if url_page.status_code != 200:
return pd.DataFrame(movies_dict)
# check number of pages
li_pagination = soup.findAll("li", {"class": "paginate-page"})
if len(li_pagination) == 0:
ul = soup.find("ul", {"class": "poster-list"})
if (ul != None):
movies = ul.find_all("li")
for movie in movies:
print("Scraping: "+movie.find('img')['alt'])
letterboxd_link = movie.find('div')['data-target-link']
movies_dict['letterboxd_id'].append(movie.find('div')['data-film-id'])
movies_dict['title'].append(movie.find('img')['alt'])
movies_dict['rating'].append(transform_ratings(movie.find('p', {"class": "poster-viewingdata"}).get_text().strip()))
movies_dict['liked'].append(movie.find('span', {'class': 'like'})!=None)
movies_dict['letterboxd_link'].append(LETTERBOXD_DOMAIN+letterboxd_link)
else:
for i in range(len(li_pagination)):
url = LETTERBOXD_DOMAIN + "/" + username + "/films/by/entry-rating/page/" + str(i+1)
url_page = requests.get(url)
if url_page.status_code != 200:
return pd.DataFrame(movies_dict)
soup = BeautifulSoup(url_page.content, 'lxml')
ul = soup.find("ul", {"class": "poster-list"})
if (ul != None):
movies = ul.find_all("li")
for movie in movies:
print("Scraping: "+movie.find('img')['alt'])
letterboxd_link = movie.find('div')['data-target-link']
movies_dict['letterboxd_id'].append(movie.find('div')['data-film-id'])
movies_dict['title'].append(movie.find('img')['alt'])
movies_dict['rating'].append(transform_ratings(movie.find('p', {"class": "poster-viewingdata"}).get_text().strip()))
movies_dict['liked'].append(movie.find('span', {'class': 'like'})!=None)
movies_dict['letterboxd_link'].append(LETTERBOXD_DOMAIN+letterboxd_link)
df_film = pd.DataFrame(movies_dict)
# Drop Films with No Rating
#df_film = df_film[df_film['rating']!=-1].reset_index(drop=True)
return df_film
# Function scrape one page
def scrape_films_one_page(username):
movies_dict = {}
movies_dict['letterboxd_id'] = []
movies_dict['title'] = []
movies_dict['rating'] = []
movies_dict['liked'] = []
movies_dict['letterboxd_link'] = []
url = LETTERBOXD_DOMAIN + "/" + username + "/films/by/entry-rating/"
url_page = requests.get(url)
# Check if the page is valid
if url_page.status_code != 200:
return pd.DataFrame(movies_dict)
soup = BeautifulSoup(url_page.content, 'lxml')
ul = soup.find("ul", {"class": "poster-list"})
if (ul != None):
movies = ul.find_all("li")
progress = 0
bar = st.progress(progress)
for movie in movies:
progress = progress+1
print("Scraping movie (one page): "+movie.find('img')['alt'])
# Get movie details
letterboxd_link = movie.find('div')['data-target-link']
movies_dict['letterboxd_id'].append(movie.find('div')['data-film-id'])
movies_dict['title'].append(movie.find('img')['alt'])
movies_dict['rating'].append(transform_ratings(movie.find('p', {"class": "poster-viewingdata"}).get_text().strip()))
movies_dict['liked'].append(movie.find('span', {'class': 'like'})!=None)
movies_dict['letterboxd_link'].append(LETTERBOXD_DOMAIN+letterboxd_link)
bar.progress(progress/len(movies))
bar.empty()
df_film = pd.DataFrame(movies_dict)
# Drop Films with No Rating
df_film = df_film[df_film['rating']!=-1].reset_index(drop=True)
# Get IMDB IDs
imdb_list = get_imdb_ids_concurrently(df_film)
df_film['IMDb_ID'] = ""
for index, row in df_film.iterrows():
for imdb in imdb_list:
if row['letterboxd_link'] == imdb[1]:
df_film.at[index, 'IMDb_ID'] = imdb[0]
# remove rows with no IMDb_ID
df_film = df_film[df_film['IMDb_ID']!="None"].reset_index(drop=True)
return df_film
# Function to get Film Details using TMDb API
def getFilmDetailsTMDb(imdbId):
# Get URL Prompt to access TMDb API
film_details_TMDb_url = "https://api.themoviedb.org/3/find/" + imdbId + "?external_source=imdb_id"
# Get response from TMDb API
response = requests.get(film_details_TMDb_url, headers=headers)
return response.text
# Function to Get Movie Genre List
def getMovieGenreList():
movie_genre_list_url = "https://api.themoviedb.org/3/genre/movie/list"
response = requests.get(movie_genre_list_url, headers=headers)
return response.text
# Function to Get TV Genre List
def getTVGenreList():
tv_genre_list_url = "https://api.themoviedb.org/3/genre/tv/list"
response = requests.get(tv_genre_list_url, headers=headers)
return response.text
# Function to Get Genre Name Using ID
def getGenresFromID(jsonGenreList, genre_ids_list):
# Create List for Genre Names
genres = ""
genreList = json.loads(jsonGenreList)
genreList = genreList["genres"]
#Find Genre names by IDs
for id in genre_ids_list:
for genre in genreList:
if genre["id"] == id:
genres = genres + genre["name"] +","
return genres[:-1] # remove last comma
# Function to Create DF with Film Metadata
def getFilmMetadataDF(film_df):
adult = []
original_language = []
overview = []
vote_average = []
vote_count = []
popularity = []
release_date = [] # For TV (First Release Date)
poster_path = []
genres = []
media = []
tmdb_id = []
# Get Genre List
tVGenreList = getTVGenreList()
movieGenreList = getMovieGenreList()
progress = 0
bar = st.progress(progress)
for index, row in film_df.iterrows():
progress = progress+1
with st.spinner('Getting movie details: '+row['title']):
# Get IMDb ID for film
imdbID = row['IMDb_ID']
print("Getting details for: "+row['title'] + " (" + imdbID + ")" )
# Call function to get Film Details
tmdbResponse = getFilmDetailsTMDb(imdbID)
filmDetail = json.loads(tmdbResponse)
# For Movies
if(len(filmDetail['movie_results'])!=0):
adult.append(str(filmDetail['movie_results'][0]['adult']))
original_language.append(str(filmDetail['movie_results'][0]['original_language']))
overview.append(str(filmDetail['movie_results'][0]['overview'].replace('\n', ' ')))
vote_average.append(str(filmDetail['movie_results'][0]['vote_average']))
vote_count.append(str(filmDetail['movie_results'][0]['vote_count']))
popularity.append(filmDetail['movie_results'][0]['popularity'])
release_date.append(filmDetail['movie_results'][0]['release_date'])
movieGenreIDs = filmDetail['movie_results'][0]['genre_ids']
movieGenres = getGenresFromID(movieGenreList, movieGenreIDs)
genres.append(movieGenres)
poster_path.append(str(filmDetail['movie_results'][0]['poster_path']))
media.append("movie")
tmdb_id.append(filmDetail['movie_results'][0]['id'])
# For TV
elif(len(filmDetail['tv_results'])!=0):
adult.append(str(filmDetail['tv_results'][0]['adult']))
original_language.append(str(filmDetail['tv_results'][0]['original_language']))
overview.append(str(filmDetail['tv_results'][0]['overview'].replace('\n', ' ')))
vote_average.append(str(filmDetail['tv_results'][0]['vote_average']))
vote_count.append(str(filmDetail['tv_results'][0]['vote_count']))
popularity.append(filmDetail['tv_results'][0]['popularity'])
release_date.append(filmDetail['tv_results'][0]['first_air_date'])
tvGenreIDs = filmDetail['tv_results'][0]['genre_ids']
tvGenres = getGenresFromID(tVGenreList, tvGenreIDs)
genres.append(tvGenres)
poster_path.append(str(filmDetail['tv_results'][0]['poster_path']))
media.append("TV")
tmdb_id.append(filmDetail['tv_results'][0]['id'])
else:
errorString = ""
adult.append(errorString)
original_language.append(errorString)
overview.append(errorString)
vote_average.append(errorString)
vote_count.append(errorString)
popularity.append(errorString)
release_date.append(errorString)
genres.append(errorString)
poster_path.append(errorString)
media.append(errorString)
tmdb_id.append(errorString)
bar.progress(progress/len(film_df))
bar.empty()
# Add the new_ratings list as a new column to the dataframe
film_df['adult'] = adult
film_df['original_language'] = original_language
film_df['overview'] = overview
film_df['vote_average'] = vote_average
film_df['vote_count'] = vote_count
film_df['popularity'] = popularity
film_df['release_date'] = release_date
film_df['genres'] = genres
film_df["poster_path"] = poster_path
film_df["media"] = media
film_df["tmdb_id"] = tmdb_id
# drop rows with no tmdb_id
film_df = film_df[film_df['tmdb_id']!=""].reset_index(drop=True)
return film_df
# Function to get poster path of movie with imdb_id
def get_poster_path(imdb_id):
# Get URL Prompt to access TMDb API
film_details_TMDb_url = "https://api.themoviedb.org/3/find/" + imdb_id + "?external_source=imdb_id"
# Get response from TMDb API
response = requests.get(film_details_TMDb_url, headers=headers)
filmDetail = json.loads(response.text)
if(len(filmDetail['movie_results'])!=0):
return filmDetail['movie_results'][0]['poster_path']
elif(len(filmDetail['tv_results'])!=0):
return filmDetail['tv_results'][0]['poster_path']
else:
return ""