-
Notifications
You must be signed in to change notification settings - Fork 39
/
Copy pathgenerate_pipeline.py
658 lines (588 loc) · 30.4 KB
/
generate_pipeline.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
'''
This script sets up the configs and creates pipelines.yml based on settings.json.
It's intended to be used on each of the logstash instance so they can get fair share of processing.
You are supposed to write your own logic to generate pipelines.yml if this strategy does not works well for you.
'''
import hashlib
import json
import os
import re
import sys
from pathlib import Path
# working directory for this script. Here logs and other state files would be saved.
working_dir = '/tmp/opensiem'
def get_logger():
import logging
from logging.handlers import RotatingFileHandler
logger = logging.getLogger()
# set default logging as lowest level
# handlers get logs after filtered by this level
logger.setLevel(logging.DEBUG)
formatter = logging.Formatter(
'%(asctime)s %(levelname)s LINE:%(lineno)d %(message)s', datefmt='%Y-%m-%d:%H:%M:%S')
console_hdlr = logging.StreamHandler()
console_hdlr.setLevel(logging.INFO)
console_hdlr.setFormatter(formatter)
Path(f'{working_dir}'.format()).mkdir(parents=True, exist_ok=True)
file_hdlr = RotatingFileHandler(
f'{working_dir}/generate_pipeline.log', maxBytes=1024)
file_hdlr.setFormatter(formatter)
file_hdlr.setLevel(logging.INFO)
logger.addHandler(file_hdlr)
logger.addHandler(console_hdlr)
return logger
logger = get_logger()
def jsonise(json_as_str: str):
return json.loads(json_as_str)
class LogstashHelper(object):
def __init__(self, logstash_dir):
self.logstash_dir = logstash_dir
self.deploy_env = os.environ['DEPLOY_ENV']
# index of this instance in the list of all logstash instances
self.my_index = int(os.environ['MY_INDEX'])
self.sub_my_ip = os.environ['SUB_MY_IP']
self.elastic_user, self.elastic_pwd = os.environ['ELASTIC_USER'], os.environ['ELASTIC_PASSWORD']
self.elastic_connection_str = os.environ['ELASTIC_CONNECTION_STRING']
self.kafka_connection_str = os.environ['KAFKA_CONNECTION_STRING']
self.kafka_user, self.kafka_pwd = os.environ['KAFKA_USER'], os.environ['KAFKA_PASSWORD']
self.rack_id = os.environ['RACK_ID']
self.logstash_api_secrets = self.__get_logstash_api_secret()
self.bucket_name = os.environ['S3_BUCKET_NAME']
self.prod_only_logs = self.__get_prod_only_logs()
self.num_instances = self.__get_num_instances()
def __get_logstash_api_secret(self):
logstash_api_sec = os.environ['LOGSTASH_API_SECRET']
return jsonise(logstash_api_sec)
def __get_num_instances(self):
num_of_logindexers = int(os.environ['INSTANCE_COUNT'])
return num_of_logindexers
def __get_prod_only_logs(self):
general_settings = load_general_settings(self.logstash_dir)
return general_settings['prod_only_logs']
def __add_custom_input_field(self, conf_file: str, config):
comma_separated_outputs = ','.join(config["output_list"])
tags_line = ''
if config["ignore_enrichments"]:
tags = '[ "{}" ]'.format('", "'.join(config["ignore_enrichments"]))
# if the list is empty it produces [""] which might break config
tags_line = f'\n add_tag => {tags}'
add_fields_block = 'add_field => {\n' + \
f' "[@metadata][index]" => "{config["log_source"]}"\n' + \
f' "[@metadata][config]" => "{config["config"]}"\n' + \
f' "[@metadata][output]" => "{config["elastic_index"]}"\n' + \
f' "[@metadata][output_pipelines]" => [{comma_separated_outputs}]\n' + \
' }' +\
f'{tags_line}'
file_contents = None
with open(conf_file, encoding='UTF-8') as config:
file_contents = config.read()
if self.deploy_env == 'test':
if 'VAR_CUSTOM_FIELDS' not in file_contents:
raise ValueError(
f'config {conf_file} does not contain VAR_CUSTOM_FIELDS')
file_contents = file_contents.replace(
'# VAR_CUSTOM_FIELDS', add_fields_block)
with open(conf_file, 'w', encoding='UTF-8') as config:
config.write(file_contents)
def __replace_vars(self, conf_file_path, vars_dict):
unknown_var_regexp = re.compile(r'VAR_.\w*')
# get the part after last slash and then the part before .conf
config_name = conf_file_path.split('/')[-1].split('.conf')[0]
log_type = config_name.split('_')[-1]
max_poll_records = 200
consumer_threads = 2
if log_type == 'daily':
# default consumer threads to 18 partitions being processed on one node each in 3 regions
# 18/3=6
consumer_threads = 6
general_settings = load_general_settings(self.logstash_dir)
processing_config = general_settings['processing_config']
if config_name in processing_config.keys():
# needs special treatment
num_nodes = int(processing_config[config_name]['nodes'])
try:
# kafka_partitions key won't exist for non kafka logs
# for a kafka log use default consumer_threads value if the key is not found
num_partitions = int(processing_config[config_name]['kafka_partitions'])
consumer_threads = 1 if num_nodes > num_partitions else int(num_partitions/num_nodes)
except KeyError:
pass
vars_dict['KAFKA_TOPIC'] = config_name
vars_dict['KAFKA_GROUP_ID'] = config_name
vars_dict['KAFKA_CLIENT_ID'] = f'{config_name}-{self.sub_my_ip}-input'
vars_dict['CONSUMER_THREADS'] = consumer_threads
vars_dict['MAX_POLL_RECORDS'] = max_poll_records
s3_date_pattern = '%{+xxxx/MM/dd}'
vars_dict['S3_PREFIX'] = f'{config_name}/{s3_date_pattern}'
file_contents = None
with open(conf_file_path, encoding='UTF-8') as config:
file_contents = config.read()
for var in vars_dict.keys():
file_contents = file_contents.replace(
f'VAR_{var}', f'{vars_dict[var]}')
unknown_vars = unknown_var_regexp.findall(file_contents)
if len(unknown_vars) > 0:
raise ValueError(
f'Unknown variable/s {unknown_vars} in config {conf_file_path}.')
with open(conf_file_path, 'w', encoding='UTF-8') as config:
config.write(file_contents)
def replace_vars(self):
'''
There are variables in conf files which follow VAR_ pattern.
Replace them with values taken from environment variables.
'''
vars_dict = {
'KAFKA_JAAS_PATH': '${LOGSTASH_HOME}/config/kafka_jaas.conf',
'KAFKA_CLIENT_TRUSTSTORE': '${LOGSTASH_HOME}/config/kafka_client_truststore.jks',
'KAFKA_TRUSTSTORE_PASSWORD': 'changeit',
'KAFKA_BOOTSTRAP_SERVERS': self.kafka_connection_str,
'RACK_ID': self.rack_id,
'LOGSTASH_PLUGIN_ID': f'logstash_kafka-{self.sub_my_ip}',
'ELASTIC_SERVERS': self.elastic_connection_str,
'ELASTIC_USER': self.elastic_user,
'ELASTIC_PASSWORD': self.elastic_pwd,
'AZURE_AUDIT_CONN': self.logstash_api_secrets['azure_audit_conn'],
'AZURE_STORAGE_CONN': self.logstash_api_secrets['azure_storage_conn'],
'AZURE_OPERATIONAL_CONN': self.logstash_api_secrets['azure_operational_conn'],
'AZURE_SIGNIN_CONN': self.logstash_api_secrets['azure_signin_conn'],
'AZURE_O365_CONN': self.logstash_api_secrets['azure_o365_conn'],
'AZURE_TCS_SECURITY_CONN': self.logstash_api_secrets['azure_tcs_security_conn'],
'AZURE_O365_DLP_CONN': self.logstash_api_secrets['azure_o365_dlp_conn'],
'AZURE_AUDIT_CONSUMER': self.logstash_api_secrets['azure_audit_consumer'],
'AZURE_OPERATIONAL_CONSUMER': self.logstash_api_secrets['azure_operational_consumer'],
'AZURE_SIGNIN_CONSUMER': self.logstash_api_secrets['azure_signin_consumer'],
'AZURE_O365_CONSUMER': self.logstash_api_secrets['azure_o365_consumer'],
'AZURE_TCS_SECURITY_CONSUMER': self.logstash_api_secrets['azure_tcs_security_consumer'],
'AZURE_O365_DLP_CONSUMER': self.logstash_api_secrets['azure_o365_dlp_consumer'],
'BUCKET_NAME': self.bucket_name,
'AZURE_ATP_CONSUMER': self.logstash_api_secrets['azure_atp_consumer'],
'AZURE_ATP_CONN': self.logstash_api_secrets['azure_atp_conn'],
'MEMCACHED_ADDRESS': self.logstash_api_secrets['memcached_address'],
'DNS_SERVER': self.logstash_api_secrets['dns_server'],
}
azure_inputs_dir = os.path.join(
self.logstash_dir, 'config', 'inputs', 'azure')
kafka_input_dir = os.path.join(
self.logstash_dir, 'config', 'inputs', 'kafka')
processor_dir = os.path.join(self.logstash_dir, 'config', 'processors')
output_dir = os.path.join(self.logstash_dir, 'config', 'outputs')
enrichment_dir = os.path.join(self.logstash_dir, 'config', 'enrichments')
settings = self.load_settings()
azure_inputs = os.listdir(azure_inputs_dir)
azure_inputs = list(filter(lambda file_name:file_name.endswith('.conf'), azure_inputs))
for input_name in azure_inputs:
try:
log_source_name = input_name[:-5] # stripping .conf
config = settings[log_source_name]
config['log_source'] = log_source_name
except KeyError:
# User doesn't want to process that log and that's okay
continue
if self.deploy_env == 'dev' and config in self.prod_only_logs:
continue
vars_dict['PIPELINE_NAME'] = '"' + log_source_name + '"'
self.__add_custom_input_field(
f'{azure_inputs_dir}/{input_name}', config)
self.__replace_vars(f'{azure_inputs_dir}/{input_name}', vars_dict)
kafka_inputs = os.listdir(kafka_input_dir)
kafka_inputs = list(filter(lambda file_name:file_name.endswith('.conf'), kafka_inputs))
for input_name in kafka_inputs:
if input_name == '1_kafka_input_template.conf':
continue
log_source_name = input_name[:-5] # stripping .conf
config = settings[log_source_name]
config['log_source'] = log_source_name
if self.deploy_env == 'dev' and config in self.prod_only_logs:
continue
self.__add_custom_input_field(
f'{kafka_input_dir}/{input_name}', config)
vars_dict['PIPELINE_NAME'] = '"' + log_source_name + '"'
codec = 'plain'
try:
# overwrite default if provided
codec = config['kafka_input']['codec']
except KeyError:
pass
vars_dict['CODEC'] = codec
self.__replace_vars(f'{kafka_input_dir}/{input_name}', vars_dict)
processsors = os.listdir(processor_dir)
processsors = list(filter(lambda file_name:file_name.endswith('.conf'), processsors))
for processor_name in processsors:
config = processor_name[:-5] # stripping .conf
if self.deploy_env == 'dev' and config in self.prod_only_logs:
continue
vars_dict['PIPELINE_NAME'] = '"' + config + '"'
self.__replace_vars(f'{processor_dir}/{processor_name}', vars_dict)
outputs = os.listdir(output_dir)
outputs = list(filter(lambda file_name:file_name.endswith('.conf'), outputs))
for output_name in outputs:
self.__replace_vars(f'{output_dir}/{output_name}', vars_dict)
enrichments = os.listdir(enrichment_dir)
enrichments = list(filter(lambda file_name:file_name.endswith('.conf'), enrichments))
for enrichment_name in enrichments:
self.__replace_vars(f'{enrichment_dir}/{enrichment_name}', vars_dict)
def __get_log_distribution(self, num_logs: int, num_servers: int, arr_idx: int, logs: list):
'''
with the current approach first few servers get all the unfairly allocated logs
and last in the list get none
# TODO change the algo to keep track on different unfair logs and distribute them evenly
# this change is out of scope of this method so this has to go probably.
'''
fair_allocation = int(num_logs / num_servers)
unfair_allocation = num_logs % num_servers
start_index = arr_idx*fair_allocation
distributed_logs = logs[start_index: start_index+fair_allocation]
if arr_idx < unfair_allocation:
distributed_logs.append(logs[-(arr_idx+1)])
return distributed_logs
def __get_matched_items(self, big_array: list, small_array: list):
'''
returns small array with only those items which exist in big array
'''
small_array = list(filter(lambda item: item in big_array, small_array))
return small_array
def get_selected_log_sources(self):
settings = self.load_settings()
conf_names = settings.keys()
general_settings = load_general_settings(self.logstash_dir)
processing_config = general_settings['processing_config']
self.prod_only_logs = self.__get_matched_items(
conf_names, self.prod_only_logs)
self.special_logs = self.__get_matched_items(
conf_names, processing_config.keys())
# calculating number of nodes needed for special logs
num_servers_for_special_logs = 0
for _,v in processing_config.items():
num_servers_for_special_logs += v['nodes']
special_confs = []
num_servers = self.num_instances
# if there are not enough servers for special logs process them like any other
if num_servers < num_servers_for_special_logs:
# cannot process special logs explicitly.
# treat them like high volume logs
self.special_logs = []
logger.warning('cannot process special logs explicitly')
num_servers_for_special_logs = 0
high_volume_logs = []
medium_volume_logs = []
low_volume_logs = []
# filter daily, weekly and monthly logs which do not need special treatment
for config_file in conf_names:
if config_file in self.special_logs:
continue
if self.deploy_env == 'dev' and config_file in self.prod_only_logs:
continue
log_type = config_file.split('_')[-1]
try:
log_volume = settings[config_file]['volume']
except KeyError:
logger.warning(f'could not find volume for {config_file}')
log_volume = 'undefined'
if log_volume == 'high':
high_volume_logs.append(config_file)
elif log_volume == 'medium':
medium_volume_logs.append(config_file)
else:
low_volume_logs.append(config_file)
# initialise selected config list for this node
selected_log_sources = []
# subtract it by one as it starts from 1
arr_idx = self.my_index - 1
# if list is non empty which means we have enough instances
if self.special_logs:
# Process special lag confs explicitly
# sequentially allocate a special log
special_confs = []
if arr_idx < num_servers_for_special_logs:
cumulative_nodes = 0
for k,v in processing_config.items():
cumulative_nodes += v['nodes']
if arr_idx < cumulative_nodes:
special_confs.append(k)
break
selected_log_sources = special_confs
if not selected_log_sources:
# for rest of the instances that does not contain special confs
# adjust num_servers and arr_idx after fully using special lag servers
num_servers = num_servers - num_servers_for_special_logs
arr_idx = arr_idx - num_servers_for_special_logs
for logs in [high_volume_logs, medium_volume_logs, low_volume_logs]:
num_logs = len(logs)
if num_logs >0 :
selected_log_sources = selected_log_sources + \
self.__get_log_distribution(
num_logs, num_servers, arr_idx, logs)
return selected_log_sources
def generate_pipeline(self, pipeline_file_path):
'''
Generate pipelines.yml and write to pipeline_file_path.
Get settings list from pipeline/confs directory and try to do a fair distribution of settings
while generated pipelines file.
'''
selected_log_sources = self.get_selected_log_sources()
settings = self.load_settings()
root_dir = self.logstash_dir
azure_inputs_dir = os.path.join(root_dir, 'config', 'inputs', 'azure')
kafka_input_dir = os.path.join(root_dir, 'config', 'inputs', 'kafka')
azure_input_list = os.listdir(azure_inputs_dir)
azure_input_list = list(filter(lambda file_name:file_name.endswith('.conf'), azure_input_list))
kafka_input_list = os.listdir(kafka_input_dir)
kafka_input_list = list(filter(lambda file_name:file_name.endswith('.conf'), kafka_input_list))
file_contents = ''
for log_source in selected_log_sources:
log_source_input_conf = f'{log_source}.conf'
# create a pipeline for input
# if input is azure
if log_source_input_conf in azure_input_list:
input_config_file_path = '${LOGSTASH_HOME}' + \
f'/config/inputs/azure/{log_source_input_conf}'
# if input is kafka
elif log_source_input_conf in kafka_input_list:
input_config_file_path = '${LOGSTASH_HOME}' + \
f'/config/inputs/kafka/{log_source_input_conf}'
else:
raise ValueError(
f'config {log_source_input_conf} does not have an input')
# and log_source name for id
input_pipeline_id = f'input_{log_source}'
# create a pipeline for processor
# use the config name for file path
processor_config_file_path = '${LOGSTASH_HOME}' + \
f'/config/processors/{log_source_input_conf}'
# and config name for id
processor_pipeline_id = f'proc_{log_source}'
try:
log_volume = settings[log_source]['volume']
except KeyError:
logger.warning(f'could not find volume for {log_source}')
log_volume = 'undefined'
if log_volume == 'high':
pipeline_workers = 8
elif log_volume == 'medium':
pipeline_workers = 4
else:
pipeline_workers = 2
if log_source in self.special_logs:
pipeline_workers = 16
batch_size = 200
processor_pipeline_entry = ''
processor_pipeline_entry = f'- pipeline.id: {processor_pipeline_id}\n' + \
f' pipeline.batch.delay: 50\n' + \
f' pipeline.batch.size: {batch_size}\n' + \
f' path.config: \"{processor_config_file_path}\"\n' + \
f' pipeline.workers: {pipeline_workers}\n'
input_pipeline_entry = f'- pipeline.id: {input_pipeline_id}\n' + \
f' pipeline.batch.delay: 150\n' + \
f' pipeline.batch.size: {batch_size}\n' + \
f' path.config: \"{input_config_file_path}\"\n' + \
f' pipeline.workers: {pipeline_workers}\n'
file_contents = file_contents + input_pipeline_entry + processor_pipeline_entry
with open(pipeline_file_path, 'a', encoding='UTF-8') as pipeline:
pipeline.write(file_contents)
def substitute_jaas_with_values(self):
'''
Substitute variables in kafka_jaas.conf
'''
jaas_file_path = f'{self.logstash_dir}/config/kafka_jaas.conf'
jaas_file_str = ''
with open(jaas_file_path, encoding='UTF-8') as jaas_file:
jaas_file_str = jaas_file.read()
jaas_file_str = jaas_file_str.replace(
'VAR_KAFKA_USER', self.kafka_user)
jaas_file_str = jaas_file_str.replace(
'VAR_KAFKA_PASSWORD', self.kafka_pwd)
with open(jaas_file_path, 'w', encoding='UTF-8') as jaas_file:
jaas_file.write(jaas_file_str)
def substitute_logger_with_values(self):
'''
Substitute variables in log4j2.properties
'''
log_file_path = f'{self.logstash_dir}/config/log4j2.properties'
log_file_str = ''
# return if user does not want to use custom log4j2.properties
if not os.path.exists(log_file_path):
return
with open(log_file_path, 'r', encoding='UTF-8') as log_settings:
log_file_str = log_settings.read()
import socket
hostname = socket.gethostname()
log_file_str = log_file_str.replace(
'VAR_HOSTNAME', hostname)
with open(log_file_path, 'w', encoding='UTF-8') as log_settings:
log_settings.write(log_file_str)
def load_settings(self):
settings = {}
settings_file_path = os.path.join(
self.logstash_dir, 'build_scripts', 'settings.json')
with open(settings_file_path, 'r', encoding='UTF-8') as settings_file:
settings = json.load(settings_file)
return settings
def generate_files(self):
'''
Generates kafka inputs from template
If a processor is shared between multiple inputs, a copy is created with log_source name to be able to map an input pipeline to a processor pipeline one to one.
A log source is kafka input if it's not azure. You need to override that logic if you want to work with other inputs.
'''
root_dir = self.logstash_dir
azure_inputs_dir = os.path.join(root_dir, 'config', 'inputs', 'azure')
kafka_input_dir = os.path.join(root_dir, 'config', 'inputs', 'kafka')
processor_dir = os.path.join(root_dir, 'config', 'processors')
azure_input_list = os.listdir(azure_inputs_dir)
azure_input_list = list(filter(lambda file_name:file_name.endswith('.conf'), azure_input_list))
# cleanup kafka inputs if any
for root, _, files in os.walk(kafka_input_dir):
for file in files:
if file != '1_kafka_input_template.conf':
os.remove(os.path.join(root, file))
settings = self.load_settings()
# cleanup generated processors if any
generated_processors = [k for k,v in settings.items() if v['config']!= k]
for root, _, files in os.walk(processor_dir):
for file in files:
if file[:-5] in generated_processors:
os.remove(os.path.join(root, file))
for key in settings.keys():
setting = settings[key]
log_source_conf = f'{key}.conf'
# generate inputs
if log_source_conf not in azure_input_list:
# it's a kafka input, generate an input conf
with open(os.path.join(kafka_input_dir, '1_kafka_input_template.conf'), 'r', encoding='UTF-8') as base_input_file:
input_file_path = os.path.join(
kafka_input_dir, log_source_conf)
with open(input_file_path, 'w', encoding='UTF-8') as kafka_input_file:
kafka_input_file.write(base_input_file.read())
# generate required processors
config = f'{setting["config"]}.conf'
if config != log_source_conf:
file_contents = ''
with open(os.path.join(processor_dir, config), 'r', encoding='UTF-8') as config_file:
file_contents = config_file.read()
processor_file_path = os.path.join(
processor_dir, log_source_conf)
with open(processor_file_path, 'w', encoding='UTF-8') as processor_file:
processor_file.write(file_contents)
def generate_checksum(self, dir_path):
'''
Generates checksums for all files in
dir_path/inputs/* & dir_path/processors/* (logstash configs)
AND
dir_path (common setting files)
and returns dictonaries settings_checksum_dict and conf_checksum_dict respectively.
Each dict contains file name as key and it's md5 hash as value.
'''
selected_log_sources = self.get_selected_log_sources()
settings = self.load_settings()
selected_log_processors = [settings[log_source]['config']
for log_source in selected_log_sources]
conf_files = []
setting_files = []
for root, _, files in os.walk(dir_path):
if root == dir_path:
setting_files = [os.path.join(root, file_name)
for file_name in files]
continue
for file_name in files:
file_path = str(os.path.join(root, file_name))
if 'inputs' in root and file_name.split('.conf')[0] not in selected_log_sources:
continue
if 'processors' in root and file_name.split('.conf')[0] not in selected_log_processors:
continue
conf_files.append(file_path)
logger.info(f'generating checksum for common files')
settings_checksum_dict = {}
for setting_file_path in setting_files:
with open(setting_file_path, 'rb') as setting_file:
settings_checksum_dict[setting_file_path.split(dir_path)[1]] = hashlib.md5(
setting_file.read()).hexdigest()
logger.info(f'generating checksum for other files')
conf_checksum_dict = {}
for conf_file_name in conf_files:
with open(conf_file_name, 'rb') as conf_file:
# get the path after config and make it the key
conf_checksum_dict[conf_file_name.split(dir_path)[1]] = hashlib.md5(
conf_file.read()).hexdigest()
return settings_checksum_dict, conf_checksum_dict
def test_for_change(self, last_deployed_dir, current_deployable_dir):
'''
Compare the checksums to see if something changed between existing deployment and ongoing deployment
If something did change, write 0 or 1 to file {working_dir}/should_redeploy depending upon what was previously written.
Chef client keeps checking this file and triggers redeploy of logstash if it was modified.
'''
old_settings_checksum_dict, old_conf_checksum_dict = self.generate_checksum(
last_deployed_dir)
new_settings_checksum_dict, new_conf_checksum_dict = self.generate_checksum(
current_deployable_dir)
changed = False
if len(new_settings_checksum_dict.keys()) == len(old_settings_checksum_dict.keys()):
# check settings checksum
for k in new_settings_checksum_dict.keys():
if new_settings_checksum_dict[k] != old_settings_checksum_dict.get(k, ''):
logger.info(f'checksum different for {k}')
changed = True
break
# check conf files checksum
for k in new_conf_checksum_dict.keys():
if new_conf_checksum_dict[k] != old_conf_checksum_dict.get(k, ''):
logger.info(f'checksum different for {k}')
changed = True
break
else:
changed = True
logger.info('checksum settings dict are unequal in length')
if changed:
contents = ''
try:
with open(f'{working_dir}/should_redeploy', 'r', encoding='UTF-8') as change_file:
contents = change_file.read()
except FileNotFoundError:
pass
with open(f'{working_dir}/should_redeploy', 'w', encoding='UTF-8') as change_file:
new_content = '1' if contents == '0' else '0'
change_file.write(new_content)
logger.info("settings changed")
def load_general_settings(root_dir):
general_settings = {}
general_settings_path = os.path.join(
root_dir, 'build_scripts', 'general.json')
with open(general_settings_path, 'r') as general_settings_file:
general_settings = json.load(general_settings_file)
return general_settings
if __name__ == "__main__":
'''
Generates pipelines.yml for a given node and notifies Chef(through {working_dir}/should_redeploy) if logstash re-deployment should happen or not.
On every node the git repo is downloded in /opt/logstash
and logstash is deployed in /usr/share/logstash .
Chef gets proper values from secrets manager and sets them as environment variables and launches this script.
The script replaces variables from all files(logstash settings, kafka_jaas, log4j2.properties etc) present in the repo
and generates pipelines.yml file for logstash
'''
try:
logger.info('##########################starting script##########################')
cur_file_path = os.path.abspath(__file__)
build_scripts_dir = os.path.dirname(cur_file_path)
logstash_dir = os.path.dirname(build_scripts_dir)
pipeline_file_path = os.path.join(
logstash_dir, 'config', 'pipelines.yml')
helper = LogstashHelper(logstash_dir)
helper.generate_files()
helper.replace_vars()
logger.info('Variables replaced')
helper.substitute_jaas_with_values()
logger.info('Kafka jaas file substituted')
helper.substitute_logger_with_values()
logger.info('logger configuration substituted')
helper.generate_pipeline(pipeline_file_path)
logger.info(f'Pipeline generated in {os.getenv("DEPLOY_ENV")}')
last_deployed_dir = '/usr/share/logstash'
current_deployable_dir = os.path.join(logstash_dir, 'config')
helper.test_for_change(last_deployed_dir, current_deployable_dir)
except KeyError as k:
logger.error(f'Could not find key {k}')
logger.exception(k)
logger.error(f'Exiting abruptly')
sys.exit(-1)
except Exception as e:
logger.exception(e)
logger.error(f'Exiting abruptly')
sys.exit(-1)