forked from lllyasviel/ControlNet
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathgradio_annotator.py
160 lines (125 loc) · 5.58 KB
/
gradio_annotator.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
import gradio as gr
from annotator.util import resize_image, HWC3
model_canny = None
def canny(img, res, l, h):
img = resize_image(HWC3(img), res)
global model_canny
if model_canny is None:
from annotator.canny import apply_canny
model_canny = apply_canny
result = model_canny(img, l, h)
return [result]
model_hed = None
def hed(img, res):
img = resize_image(HWC3(img), res)
global model_hed
if model_hed is None:
from annotator.hed import apply_hed
model_hed = apply_hed
result = model_hed(img)
return [result]
model_mlsd = None
def mlsd(img, res, thr_v, thr_d):
img = resize_image(HWC3(img), res)
global model_mlsd
if model_mlsd is None:
from annotator.mlsd import apply_mlsd
model_mlsd = apply_mlsd
result = model_mlsd(img, thr_v, thr_d)
return [result]
model_midas = None
def midas(img, res, a):
img = resize_image(HWC3(img), res)
global model_midas
if model_midas is None:
from annotator.midas import apply_midas
model_midas = apply_midas
results = model_midas(img, a)
return results
model_openpose = None
def openpose(img, res, has_hand):
img = resize_image(HWC3(img), res)
global model_openpose
if model_openpose is None:
from annotator.openpose import apply_openpose
model_openpose = apply_openpose
result, _ = model_openpose(img, has_hand)
return [result]
model_uniformer = None
def uniformer(img, res):
img = resize_image(HWC3(img), res)
global model_uniformer
if model_uniformer is None:
from annotator.uniformer import apply_uniformer
model_uniformer = apply_uniformer
result = model_uniformer(img)
return [result]
block = gr.Blocks().queue()
with block:
with gr.Row():
gr.Markdown("## Canny Edge")
with gr.Row():
with gr.Column():
input_image = gr.Image(source='upload', type="numpy")
low_threshold = gr.Slider(label="low_threshold", minimum=1, maximum=255, value=100, step=1)
high_threshold = gr.Slider(label="high_threshold", minimum=1, maximum=255, value=200, step=1)
resolution = gr.Slider(label="resolution", minimum=256, maximum=1024, value=512, step=64)
run_button = gr.Button(label="Run")
with gr.Column():
gallery = gr.Gallery(label="Generated images", show_label=False).style(height="auto")
run_button.click(fn=canny, inputs=[input_image, resolution, low_threshold, high_threshold], outputs=[gallery])
with gr.Row():
gr.Markdown("## HED Edge")
with gr.Row():
with gr.Column():
input_image = gr.Image(source='upload', type="numpy")
resolution = gr.Slider(label="resolution", minimum=256, maximum=1024, value=512, step=64)
run_button = gr.Button(label="Run")
with gr.Column():
gallery = gr.Gallery(label="Generated images", show_label=False).style(height="auto")
run_button.click(fn=hed, inputs=[input_image, resolution], outputs=[gallery])
with gr.Row():
gr.Markdown("## MLSD Edge")
with gr.Row():
with gr.Column():
input_image = gr.Image(source='upload', type="numpy")
value_threshold = gr.Slider(label="value_threshold", minimum=0.01, maximum=2.0, value=0.1, step=0.01)
distance_threshold = gr.Slider(label="distance_threshold", minimum=0.01, maximum=20.0, value=0.1, step=0.01)
resolution = gr.Slider(label="resolution", minimum=256, maximum=1024, value=384, step=64)
run_button = gr.Button(label="Run")
with gr.Column():
gallery = gr.Gallery(label="Generated images", show_label=False).style(height="auto")
run_button.click(fn=mlsd, inputs=[input_image, resolution, value_threshold, distance_threshold], outputs=[gallery])
with gr.Row():
gr.Markdown("## MIDAS Depth and Normal")
with gr.Row():
with gr.Column():
input_image = gr.Image(source='upload', type="numpy")
alpha = gr.Slider(label="alpha", minimum=0.1, maximum=20.0, value=6.2, step=0.01)
resolution = gr.Slider(label="resolution", minimum=256, maximum=1024, value=384, step=64)
run_button = gr.Button(label="Run")
with gr.Column():
gallery = gr.Gallery(label="Generated images", show_label=False).style(height="auto")
run_button.click(fn=midas, inputs=[input_image, resolution, alpha], outputs=[gallery])
with gr.Row():
gr.Markdown("## Openpose")
with gr.Row():
with gr.Column():
input_image = gr.Image(source='upload', type="numpy")
hand = gr.Checkbox(label='detect hand', value=False)
resolution = gr.Slider(label="resolution", minimum=256, maximum=1024, value=512, step=64)
run_button = gr.Button(label="Run")
with gr.Column():
gallery = gr.Gallery(label="Generated images", show_label=False).style(height="auto")
run_button.click(fn=openpose, inputs=[input_image, resolution, hand], outputs=[gallery])
with gr.Row():
gr.Markdown("## Uniformer Segmentation")
with gr.Row():
with gr.Column():
input_image = gr.Image(source='upload', type="numpy")
resolution = gr.Slider(label="resolution", minimum=256, maximum=1024, value=512, step=64)
run_button = gr.Button(label="Run")
with gr.Column():
gallery = gr.Gallery(label="Generated images", show_label=False).style(height="auto")
run_button.click(fn=uniformer, inputs=[input_image, resolution], outputs=[gallery])
block.launch(server_name='0.0.0.0')