-
Notifications
You must be signed in to change notification settings - Fork 28
/
Copy pathops.py
153 lines (90 loc) · 3.45 KB
/
ops.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
# -*- coding: utf-8 -*-
"""
Created on Sun Mar 19 16:47:13 2017
@author: Chin-Wei
"""
PARAM_EXTENSION = 'params'
import cPickle as pickle
import numpy as np
from sklearn.preprocessing import OneHotEncoder
floatX = 'float32'
import scipy.io
from torch.utils.data import Dataset as Dataset
import external_maf as maf
def load_bmnist_image():
# Larochelle 2011
path_tr = 'dataset/binarized_mnist_train.amat'
path_va = 'dataset/binarized_mnist_valid.amat'
path_te = 'dataset/binarized_mnist_test.amat'
train_x = np.loadtxt(path_tr).astype('float32').reshape(50000,784)
valid_x = np.loadtxt(path_va).astype('float32').reshape(10000,784)
test_x = np.loadtxt(path_te).astype('float32').reshape(10000,784)
return train_x, valid_x, test_x
def load_mnist_image(n_validation=1345, state=123):
filenames = ['train-images-idx3-ubyte', 't10k-images-idx3-ubyte']
path_tr = 'dataset/{}'.format(filenames[0])
path_te = 'dataset/{}'.format(filenames[1])
tr = np.loadtxt(path_tr).astype('float32')
te = np.loadtxt(path_te).astype('float32')
return tr[:50000], tr[50000:], te
def load_cifar10_image(labels=False):
f = lambda d:d.astype(floatX)
filename = 'dataset/cifar10.pkl'
tr_x, tr_y, te_x, te_y = pickle.load(open(filename,'r'))
if tr_x.max() == 255:
tr_x = tr_x / 256.
te_x = te_x / 256.
if labels:
enc = OneHotEncoder(10)
tr_y = enc.fit_transform(tr_y).toarray().reshape(50000,10).astype(int)
te_y = enc.fit_transform(te_y).toarray().reshape(10000,10).astype(int)
return (f(d) for d in [tr_x, tr_y, te_x, te_y])
else:
return (f(d) for d in [tr_x, te_x])
def load_omniglot_image(n_validation=1345, state=123):
def reshape_data(data):
return data.reshape((-1, 28, 28)).reshape((-1, 28*28), order='fortran')
path = 'dataset/omniglot.amat'
omni_raw = scipy.io.loadmat(path)
train_data = reshape_data(omni_raw['data'].T.astype('float32'))
test_data = reshape_data(omni_raw['testdata'].T.astype('float32'))
n = train_data.shape[0]
ind_va = np.random.RandomState(
state).choice(n, n_validation, replace=False)
ind_tr = np.delete(np.arange(n), ind_va)
return train_data[ind_tr], train_data[ind_va], test_data
class DatasetWrapper(Dataset):
def __init__(self, dataset, transform=None):
self.dataset = dataset
self.transform = transform
def __len__(self):
return len(self.dataset)
def __getitem__(self, ind):
sample = self.dataset[ind]
if self.transform:
sample = self.transform(sample)
return sample
class InputOnly(Dataset):
def __init__(self, dataset):
self.dataset = dataset
def __len__(self):
return len(self.dataset)
def __getitem__(self, ind):
return self.dataset[ind][0]
def load_maf_data(name):
if name == 'mnist':
return maf.MNIST(logit=True, dequantize=True)
elif name == 'bsds300':
return maf.BSDS300()
elif name == 'cifar10':
return maf.CIFAR10(logit=True, flip=True, dequantize=True)
elif name == 'power':
return maf.POWER()
elif name == 'gas':
return maf.GAS()
elif name == 'hepmass':
return maf.HEPMASS()
elif name == 'miniboone':
return maf.MINIBOONE()
else:
raise ValueError('Unknown dataset')