-
Notifications
You must be signed in to change notification settings - Fork 28
/
Copy pathmaf_experiments.py
432 lines (332 loc) · 13.4 KB
/
maf_experiments.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
#!/usr/bin/env python2
# -*- coding: utf-8 -*-
"""
Created on Sun Jan 7 23:33:04 2018
@author: chinwei
"""
import numpy as np
import torch
import torch.utils.data as data
import torch.nn as nn
#import torch.optim as optim
from torchkit import optim
from torch.autograd import Variable
from torchkit import nn as nn_, flows, utils
from torchkit.transforms import from_numpy, binarize
from torchvision.transforms import transforms
from ops import load_maf_data
from ops import DatasetWrapper
import time
import json
import argparse, os
class MAF(object):
def __init__(self, args, p):
self.args = args
self.__dict__.update(args.__dict__)
self.p = p
dim = p
dimc = 1
dimh = args.dimh
flowtype = args.flowtype
num_flow_layers = args.num_flow_layers
num_ds_dim = args.num_ds_dim
num_ds_layers = args.num_ds_layers
fixed_order = args.fixed_order
act = nn.ELU()
if flowtype == 'affine':
flow = flows.IAF
elif flowtype == 'dsf':
flow = lambda **kwargs:flows.IAF_DSF(num_ds_dim=num_ds_dim,
num_ds_layers=num_ds_layers,
**kwargs)
elif flowtype == 'ddsf':
flow = lambda **kwargs:flows.IAF_DDSF(num_ds_dim=num_ds_dim,
num_ds_layers=num_ds_layers,
**kwargs)
sequels = [nn_.SequentialFlow(
flow(dim=dim,
hid_dim=dimh,
context_dim=dimc,
num_layers=args.num_hid_layers+1,
activation=act,
fixed_order=fixed_order),
flows.FlipFlow(1)) for i in range(num_flow_layers)] + \
[flows.LinearFlow(dim, dimc),]
self.flow = nn.Sequential(
*sequels)
if self.cuda:
self.flow = self.flow.cuda()
def density(self, spl):
n = spl.size(0)
context = Variable(torch.FloatTensor(n, 1).zero_())
lgd = Variable(torch.FloatTensor(n).zero_())
zeros = Variable(torch.FloatTensor(n, self.p).zero_())
if self.cuda:
context = context.cuda()
lgd = lgd.cuda()
zeros = zeros.cuda()
z, logdet, _ = self.flow((spl, lgd, context))
losses = - utils.log_normal(z, zeros, zeros+1.0).sum(1) - logdet
return - losses
def loss(self, x):
return - self.density(x)
def state_dict(self):
return self.flow.state_dict()
def load_state_dict(self, states):
self.flow.load_state_dict(states)
def clip_grad_norm(self):
nn.utils.clip_grad_norm(self.flow.parameters(),
self.clip)
class model(object):
patience = 30
def __init__(self, args, filename):
self.__dict__.update(args.__dict__)
self.filename = filename
self.args = args
if args.dataset == 'power':
p = 6
D = load_maf_data('power')
elif args.dataset == 'gas':
p = 8
D = load_maf_data('gas')
elif args.dataset == 'hepmass':
p = 21
D = load_maf_data('hepmass')
elif args.dataset == 'miniboone':
p = 43
D = load_maf_data('miniboone')
elif args.dataset == 'bsds300':
p = 63
D = load_maf_data('bsds300')
tr, va, te = D.trn.x, D.val.x, D.tst.x
self.train_loader = data.DataLoader(tr,
batch_size=args.batch_size,
shuffle=True)
self.valid_loader = data.DataLoader(va,
batch_size=args.batch_size,
shuffle=False)
self.test_loader = data.DataLoader(te,
batch_size=args.batch_size,
shuffle=False)
self.maf = MAF(args, p)
# optim
amsgrad = bool(args.amsgrad)
polyak = args.polyak
self.optim = optim.Adam(self.maf.flow.parameters(),
lr=args.lr,
betas=(args.beta1, args.beta2),
amsgrad=amsgrad,
polyak=polyak)
# initialize checkpoint
self.checkpoint = dict()
self.checkpoint['best_val'] = float('inf')
self.checkpoint['best_val_epoch'] = 0
self.checkpoint['e'] = 0
def train(self, epoch):
optim = self.optim
t = 0
LOSSES = 0
counter = 0
#for e in range(epoch):
while self.checkpoint['e'] < epoch:
for x in self.train_loader:
optim.zero_grad()
x = Variable(x)
if self.cuda:
x = x.cuda()
losses = self.maf.loss(x)
loss = losses.mean()
LOSSES += losses.sum().data.cpu().numpy()
counter += losses.size(0)
loss.backward()
self.maf.clip_grad_norm()
optim.step()
t += 1
if self.checkpoint['e']%1 == 0:
optim.swap()
loss_val = self.evaluate(self.valid_loader)
loss_tst = self.evaluate(self.test_loader)
print 'Epoch: [%4d/%4d] train <= %.2f ' \
'valid: %.3f test: %.3f' % \
(self.checkpoint['e']+1, epoch, LOSSES/float(counter),
loss_val,
loss_tst)
if loss_val < self.checkpoint['best_val']:
print(' [^] Best validation loss [^] ... [saving]')
self.save(self.save_dir+'/'+self.filename+'_best')
self.checkpoint['best_val'] = loss_val
self.checkpoint['best_val_epoch'] = self.checkpoint['e']+1
LOSSES = 0
counter = 0
optim.swap()
self.checkpoint['e'] += 1
if (self.checkpoint['e'])%5 == 0:
self.save(self.save_dir+'/'+self.filename+'_last')
if self.impatient():
print 'Terminating due to impatience ... \n'
break
# loading best valid model (early stopping)
self.load(self.save_dir+'/'+self.filename+'_best')
def impatient(self):
current_epoch = self.checkpoint['e']
bestv_epoch = self.checkpoint['best_val_epoch']
return current_epoch - bestv_epoch > self.patience
def evaluate(self, dataloader):
LOSSES = 0
c = 0
for x in dataloader:
x = Variable(x)
if self.cuda:
x = x.cuda()
losses = self.maf.loss(x).data.cpu().numpy()
LOSSES += losses.sum()
c += losses.shape[0]
return LOSSES / float(c)
def save(self, fn):
torch.save(self.maf.state_dict(), fn+'_model.pt')
torch.save(self.optim.state_dict(), fn+'_optim.pt')
with open(fn+'_args.txt','w') as out:
out.write(json.dumps(self.args.__dict__,indent=4))
with open(fn+'_checkpoint.txt','w') as out:
out.write(json.dumps(self.checkpoint,indent=4))
def load(self, fn):
self.maf.load_state_dict(torch.load(fn+'_model.pt'))
self.optim.load_state_dict(torch.load(fn+'_optim.pt'))
def resume(self, fn):
self.load(fn)
self.checkpoint.update(
json.loads(open(fn+'_checkpoint.txt','r').read()))
# =============================================================================
# main
# =============================================================================
"""parsing and configuration"""
def parse_args():
desc = "MAF"
parser = argparse.ArgumentParser(description=desc)
parser.add_argument('--dataset', type=str, default='miniboone',
choices=['power',
'gas',
'hepmass',
'miniboone',
'bsds300'])
parser.add_argument('--epoch', type=int, default=400,
help='The number of epochs to run')
parser.add_argument('--batch_size', type=int, default=100,
help='The size of batch')
parser.add_argument('--save_dir', type=str, default='models',
help='Directory name to save the model')
parser.add_argument('--result_dir', type=str, default='results',
help='Directory name to save the generated images')
parser.add_argument('--log_dir', type=str, default='logs',
help='Directory name to save training logs')
parser.add_argument('--seed', type=int, default=1993,
help='Random seed')
parser.add_argument('--fn', type=str, default='0',
help='Filename of model to be loaded')
parser.add_argument('--to_train', type=int, default=1,
help='1 if to train 0 if not')
parser.add_argument('--lr', type=float, default=0.0001)
parser.add_argument('--clip', type=float, default=5.0)
parser.add_argument('--beta1', type=float, default=0.9)
parser.add_argument('--beta2', type=float, default=0.999)
parser.add_argument('--amsgrad', type=int, default=0)
parser.add_argument('--polyak', type=float, default=0.0)
parser.add_argument('--cuda', type=bool, default=False)
parser.add_argument('--dimh', type=int, default=100)
parser.add_argument('--flowtype', type=str, default='affine')
parser.add_argument('--num_flow_layers', type=int, default=5)
parser.add_argument('--num_hid_layers', type=int, default=1)
parser.add_argument('--num_ds_dim', type=int, default=16)
parser.add_argument('--num_ds_layers', type=int, default=1)
parser.add_argument('--fixed_order', type=bool, default=True,
help='Fix the made ordering to be the given order')
return check_args(parser.parse_args())
"""checking arguments"""
def check_args(args):
# --save_dir
if not os.path.exists(args.save_dir):
os.makedirs(args.save_dir)
# --result_dir
if not os.path.exists(args.result_dir + '_' + args.dataset):
os.makedirs(args.result_dir + '_' + args.dataset)
# --result_dir
if not os.path.exists(args.log_dir):
os.makedirs(args.log_dir)
# --epoch
try:
assert args.epoch >= 1
except:
print('number of epochs must be larger than or equal to one')
# --batch_size
try:
assert args.batch_size >= 1
except:
print('batch size must be larger than or equal to one')
return args
def args2fn(args):
prefix_key_pairs = [
('', 'dataset'),
('e', 'epoch'),
('s', 'seed'),
('p', 'polyak'),
('h', 'dimh'),
('f', 'flowtype'),
('fl', 'num_flow_layers'),
('l', 'num_hid_layers'),
('dsdim','num_ds_dim'),
('dsl', 'num_ds_layers'),
]
return '_'.join([p+str(args.__dict__[k]) for p, k in prefix_key_pairs])
"""main"""
def main():
# parse arguments
args = parse_args()
if args is None:
exit()
np.random.seed(args.seed)
torch.manual_seed(args.seed+10000)
#fn = str(time.time()).replace('.','')
fn = args2fn(args)
print args
print '\nfilename: ', fn
print(" [*] Building model!")
if args.fn != '0':
# overwrite
# args.fn ends with ``_last'' or ``_best''
old_fn = args.fn
overwrite_args = True
print 'MANUALLY RESUMING'
else:
# automatic resuming the last model
# (of the same args) if it exists
old_fn = fn + '_last'
overwrite_args = False
print 'AUTOMATICALLY RESUMING'
old_args = args.save_dir+'/'+old_fn+'_args.txt'
old_path = args.save_dir+'/'+old_fn
if os.path.isfile(old_args):
def without_keys(d, keys):
return {x: d[x] for x in d if x not in keys}
d = without_keys(json.loads(open(old_args,'r').read()),
['to_train','epoch'])
args.__dict__.update(d)
if overwrite_args:
fn = args2fn(args)
print(" New args:" )
print args
print '\nfilename: ', fn
mdl = model(args, fn)
print(" [*] Loading model!")
mdl.resume(old_path)
else:
mdl = model(args, fn)
# launch the graph in a session
if args.to_train:
print(" [*] Training started!")
mdl.train(args.epoch)
print(" [*] Training finished!")
print " [**] Valid: %.4f" % mdl.evaluate(mdl.valid_loader)
print " [**] Test: %.4f" % mdl.evaluate(mdl.test_loader)
print(" [*] Testing finished!")
if __name__ == '__main__':
main()