-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
98 lines (87 loc) · 3.87 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
import os
import random
import numpy as np
import torch
import yaml
import argparse
from torch.utils.data import DataLoader
import torch.optim as optim
from neural_nets import model_factory
from datasets import dataset_factory
from train_utils.train_utils import main_training_loop, test, parse_args
from adversity.transforms import apply_augmentation
from torch.utils.tensorboard import SummaryWriter
from ConfigSpace import Configuration, ConfigurationSpace
from smac import HyperparameterOptimizationFacade, Scenario
from smac import RunHistory
import pandas as pd
import pdb
# Set random seeds
random.seed(42)
np.random.seed(42)
torch.manual_seed(42)
torch.cuda.manual_seed(42)
torch.cuda.manual_seed_all(42)
def main(hyperparam_config=None, seed=42):
args = parse_args()
with open(args.config, 'r') as file:
config = yaml.safe_load(file)
if hyperparam_config:
config["dataset"]["kwargs"].update(hyperparam_config)
torch.cuda.set_device(config['device'])
model_name = config['model']['name']
dataset_name = config['dataset']['name']
save_path = f'models/{model_name}_{dataset_name}.pth'
train_dataset = dataset_factory[config['dataset']['name']](
**config['dataset']['kwargs'], mode="train",
transforms=apply_augmentation)
test_dataset = dataset_factory[config['dataset']['name']](
**config['dataset']['kwargs'], mode="test_full",
transforms=apply_augmentation) # test on full image
train_loader = DataLoader(train_dataset,
batch_size=config['dataset']['batch_size'],
shuffle=True)
print("train:", train_dataset)
print("test:", test_dataset)
test_loader = DataLoader(test_dataset,
batch_size=config['dataset']['batch_size'],
shuffle=True)
print('total batches:', len(train_loader))
DEVICE = torch.device(f"cuda:{config['device']}" if torch.cuda.is_available() else "cpu")
net = model_factory[model_name](**config['model']['kwargs']).to(torch.double).to(DEVICE)
optimizer = optim.Adam(net.parameters(), lr=0.001)
scheduler = torch.optim.lr_scheduler.ReduceLROnPlateau(optimizer,
mode='min', factor=0.5, patience=3)
# Initialize TensorBoard writer
writer = SummaryWriter()
final_ep_loss = main_training_loop(train_loader, net, optimizer, scheduler,
writer=writer, save_path=save_path,
num_epochs=config["num_epochs"], device=DEVICE, log_interval=2, config=config)
# Close the writer
writer.close()
if not hyperparam_config:
mIOU, gdice = test(test_loader, net, save_path=save_path,
num_classes=config['model']['kwargs']['output_channels'])
print(f"mIOU: {mIOU}, gdice: {gdice}")
else:
mIOU, gdice = test(train_loader, net, save_path=save_path,
num_classes=config['model']['kwargs']['output_channels'])
return 1 - gdice
main()
def get_best_params():
configspace = ConfigurationSpace({"conductivity": (0.0, 1.0),
"window_size": [2, 3, 4, 5, 6]
})
# configspace = ConfigurationSpace({
# "alpha": (0.0, 1.0),
# "gamma": [2.0, 3.0, 4.0]
# })
scenario = Scenario(configspace,
name="get_loss_urban_best",
deterministic=True, n_trials=10)
smac = HyperparameterOptimizationFacade(scenario, main)
incumbent = smac.optimize()
# Let's calculate the cost of the incumbent
incumbent_cost = smac.validate(incumbent)
print(f"Incumbent cost: {incumbent_cost}")
# get_best_params()