-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathposition_cross_reference.py
executable file
·70 lines (48 loc) · 2.11 KB
/
position_cross_reference.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
import pandas as pd
from pandas import Series, DataFrame
""" here I am using trimmed .vcf files to speed things gup. just the contig and pos
columns. these can be isolated from a .vcf using the code:
cat input.vcf | grep -v '##' | cut -f 1,2 > output_positions.txt """
def read_pos_dat(position_file):
""" take the positions file and read in lines, adding info to a df """
list_of_dat =[]
with open(position_file) as file:
for line in file:
line_dat = line.rstrip().split('\t')
designation = '%s_%s' % (line_dat[0], line_dat[1])
list_of_dat.append([designation , line_dat[0], line_dat[1], 1])
return list_of_dat
def pos_dat_to_df(list_of_pos_dat, individual_name):
"""return the df of informaiton for that individual with columns:
designation contig pos individual_name """
position_df = DataFrame(list_of_pos_dat, columns = ['designation', 'Contig', 'position', individual_name])
return position_df
def merge_dict_of_df(dict_of_dfs, col_to_merge_by):
""" take a dictonary of dataframes, merge them all to a single df based on
the query column """
first = list(dict_of_dfs.keys())[0]
left = dict_of_dfs[first]
for i in list(dict_of_dfs.keys())[1:]:
right = dict_of_dfs[i]
result = pd.merge(left, right, on=col_to_merge_by)
left = result
return left
if __name__ == '__main__':
list_of_files = ['HI.3442.001.Index_2.Salp_J03B_positions.txt',
'HI.3442.002.Index_13.Salp_J10A_positions.txt',
'HI.3442.003.Index_6.Salp_J10B_positions.txt',
'HI.3442.004.Index_15.Salp_J13B_positions.txt',
'HI.3442.005.Index_7.Salp_J16B_positions.txt',
'HI.3442.006.Index_18.Salp_J18A_positions.txt',
'HI.3442.007.Index_14.Salp_J20A_positions.txt',
'HI.3442.008.Index_16.Salp_J20B_positions.txt']
df_dict = {}
for text in list_of_files:
""" construct the df for each snp, add results to dictonary """
name = 'Koop_AC_' + text.split('.')[2]
input_dat = read_pos_dat(text)
df_dict[name] = pos_dat_to_df(input_dat, name)
df_dict.keys()
output_df = merge_dict_of_df(df_dict,'designation')
output_df.head()
output_df.to_csv('koop_merged_dataframe_snp_locations.tsv', sep='\t')