-
Notifications
You must be signed in to change notification settings - Fork 181
/
Copy pathoptimization_tools.py
1001 lines (875 loc) · 39.2 KB
/
optimization_tools.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
"""Utility classes and functionalities loosely related to optimization
"""
from __future__ import absolute_import, division, print_function #, unicode_literals
import sys
import warnings
import numpy as np
from multiprocessing import Pool as ProcessingPool
# from pathos.multiprocessing import ProcessingPool
from .utilities.utils import BlancClass as _BlancClass
from .utilities.math import Mh
# from .transformations import BoundTransform # only to make it visible but gives circular import anyways
from .utilities.python3for2 import range
del absolute_import, division, print_function #, unicode_literals
def semilogy_signed(x=None, y=None, yoffset=0, minabsy=None, iabscissa=1,
**kwargs):
"""signed semilogy plot.
``plt.yscale('symlog', linthreshy=min(abs(data[data != 0])))`` should
do the same job as least as good.
`y` (or `x` if `y` is `None`) is a data array, by default read from
`outcmaesxmean.dat` or (first) from the default logger output file
like::
xy = cma.logger.CMADataLogger().load().data['xmean']
x, y = xy[:, iabscissa], xy[:, 5:]
semilogy_signed(x, y)
Plotted is `y - yoffset` vs `x` for positive values as a semilogy plot
and for negative values as a semilogy plot of absolute values with
inverted axis.
`minabsy` controls the minimum shown value away from zero, which can
be useful if extremely small non-zero values occur in the data.
"""
from matplotlib import pyplot as plt
if y is None:
if x is not None:
x, y = y, x
else:
try:
from . import logger
xy = logger.CMADataLogger().load().data['xmean']
except:
xy = np.loadtxt('outcmaesxmean.dat', comments=('%',))
x, y = xy[:, iabscissa], xy[:, 5:]
y = np.array(y, copy=True) # not always necessary, but sometimes?
if yoffset not in (None, 0):
try:
y -= yoffset
except: # recycle last entry of yoffset
yoffset = [yoffset[i if i < len(yoffset) else -1] for i in range(y.shape[1])]
y -= yoffset
elif 11 < 3:
pass # TODO: subtract optionally last x!? (not smallest which is done anyways)
min_log = np.log10(minabsy) if minabsy else \
int(np.floor(np.min(np.log10(np.abs(y[y!=0])))))
idx_zeros = np.abs(y) < 10**min_log
idx_pos = y >= 10**min_log
idx_neg = y <= -10**min_log
y[idx_pos] = np.log10(y[idx_pos]) - min_log
y[idx_neg] = -(np.log10(-y[idx_neg]) - min_log)
y[idx_zeros] = 0
if x is None:
x = range(1, y.shape[0] + 1)
if 'labels' in kwargs:
kwargs_labels = kwargs.pop('labels')
for i, yi in enumerate(np.asarray(y).T):
plt.plot(x, yi, label=kwargs_labels[i] if i < len(kwargs_labels) else None, **kwargs)
plt.legend(framealpha=0.1) # more opaque than not
else:
plt.plot(x, y, **kwargs)
if 'label' in kwargs:
plt.legend(framealpha=0.1) # more opaque than not
# the remainder is changing y-labels
ax = plt.gca()
ticks, labels = [], []
for val in ax.get_yticks():
s = (r"$10^{%.2f}$") % (val + min_log)
if val < 0:
s = (r"$-10^{%.2f}$") % (-val + min_log)
elif val == 0:
s = (r"$\pm10^{%.2f}$") % min_log
if '.' in s:
while s[-3] == '0': # remove trailing zeros
s = s[:-3] + s[-2:]
if s[-3] == '.': # remove trailing dot
s = s[:-3] + s[-2:]
labels += [s]
ticks += [val]
ax.set_yticks(ticks)
ax.set_yticklabels(labels)
plt.grid(True)
def contour_data(fct, x_range, y_range=None):
"""generate x,y,z-data for contour plot.
`fct` is a 2-D function.
`x`- and `y_range` are `iterable` (e.g. `list` or arrays)
to define the meshgrid.
CAVEAT: this function calls `fct` ``len(list(x_range)) * len(list(y_range))``
times. Hence using `Sections` may be the better first choice to
investigate an expensive function.
Examples:
>>> from cma import optimization_tools
>>> import numpy as np
...
>>> def plt_contour(): # def avoids doctest execution
... from matplotlib import pyplot as plt
...
... X, Y, Z = optimization_tools.contour_data(
... lambda x: sum([xi**2 for xi in x]),
... np.arange(0.90, 1.10, 0.02),
... np.arange(-0.10, 0.10, 0.02))
... CS = plt.contour(X, Y, Z)
... plt.gca().set_aspect('equal')
... plt.clabel(CS)
>>> def plt_surface(): # def avoids doctest execution
... from matplotlib import pyplot as plt
... from mpl_toolkits import mplot3d
...
... X, Y, Z = optimization_tools.contour_data(
... lambda x: sum([xi**2 for xi in x]),
... np.arange(-1, 1.1, 0.02))
... ax = plt.axes(projection='3d')
... ax.plot_surface(X, Y, Z, cmap='viridis', edgecolor='none')
See `cma.fitness_transformations.FixVariables` to create a 2-D
function from a d-D function, e.g. like
>>> import cma
...
>>> fd = cma.ff.elli
>>> x0 = np.zeros(22)
>>> indices_to_vary = [2, 4]
>>> f2 = cma.fitness_transformations.FixVariables(fd,
... dict((i, x0[i]) for i in range(len(x0))
... if i not in indices_to_vary))
>>> isinstance(f2, cma.fitness_transformations.FixVariables)
True
>>> isinstance(f2, cma.fitness_transformations.ComposedFunction)
True
>>> f2[0] is fd, len(f2) == 2
(True, True)
"""
if y_range is None:
y_range = x_range
X, Y = np.meshgrid(x_range, y_range)
Z = X.copy()
for i in range(len(X)):
for j in range(len(X[0])):
Z[i][j] = fct(np.asarray([X[i][j], Y[i][j]]))
return X, Y, Z
# ecdf_data
def step_data(data, smooth_corners=0.1):
"""return x, y ECDF data for ECDF plot. Smoothing may look strange
in a semilogx plot.
"""
x = np.asarray(sorted(data))
y = np.linspace(0, 1, len(x) + 1, endpoint=True)
if smooth_corners:
x = np.array([x - smooth_corners * np.hstack([[0], np.diff(x)]),
x, x, x + smooth_corners * np.hstack([np.diff(x), [0]])])
else:
x = np.array([x, x])
x = x.reshape(x.size, order='F')
if smooth_corners:
y = np.array([y[:-1], (1 - smooth_corners) * y[:-1] + smooth_corners * y[1:],
smooth_corners * y[:-1] + (1 - smooth_corners) * y[1:], y[1:]])
else:
y = np.array([y[:-1], y[1:]])
y = y.reshape(y.size, order='F')
# y = np.linspace(0, 1, len(x), endpoint=True)
return x, y
class EvalParallel2(object):
"""A class and context manager for parallel evaluations.
This class is based on the ``Pool`` class of the `multiprocessing` module.
The interface in v2 changed, such that the fitness function can be
given once in the constructor. Hence the number of processes has
become the second (optional) argument of `__init__` and the function
has become the second and optional argument of `__call__`.
To be used with the `with` statement (otherwise `terminate` needs to
be called to free resources)::
with EvalParallel2(fitness_function) as eval_all:
fvals = eval_all(solutions)
assigns a callable `EvalParallel2` class instance to ``eval_all``.
The instance can be called with a `list` (or `tuple` or any
sequence) of solutions and returns their fitness values. That is::
eval_all(solutions) == [fitness_function(x) for x in solutions]
`EvalParallel2.__call__` may take three additional optional arguments,
namely `fitness_function` (like this the function may change from call
to call), `args` passed to ``fitness`` and `timeout` passed to the
`multiprocessing.pool.ApplyResult.get` method which raises
`multiprocessing.TimeoutError` in case.
``eval_all = EvalParallel2(fitness_function, 0)`` bypasses
`multiprocessing`, hence the construct can be used even when
`multiprocessing` fails on this `fitness_function` instantiation.
Examples:
>>> from cma.optimization_tools import EvalParallel2
>>> for n_jobs in [None, -1, 0, 1, 2, 4]:
... with EvalParallel2(cma.fitness_functions.elli, n_jobs) as eval_all:
... res = eval_all([[1,2], [3,4]])
>>> # class usage, don't forget to call terminate
>>> ep = EvalParallel2(cma.fitness_functions.elli, 4)
>>> [float(v) for v in ep([[1,2], [3,4], [4, 5]])] # doctest:+ELLIPSIS
[4000000.944...
>>> ep.terminate()
...
>>> # use with `with` statement (context manager)
>>> es = cma.CMAEvolutionStrategy(3 * [1], 1, dict(verbose=-9))
>>> with EvalParallel2(cma.fitness_functions.elli,
... number_of_processes=12) as eval_all:
... while not es.stop():
... X = es.ask()
... es.tell(X, eval_all(X, args=(1e1,))) # `eval_all` also accepts
... # `fitness_function` as
... # (optional) keyword argument
>>> assert es.result[1] < 1e-13 and es.result[2] < 1500
Parameters: the `EvalParallel2` constructor takes the number of
processes as optional input argument, which is by default
``multiprocessing.cpu_count()``. If ``number_of_processes <= 0``, no
`multiprocessing` is invoked and the fitness is computed directly in a
regular loop.
Limitations: the `multiprocessing` module, on which this class is based
upon, may not work with certain class instance methods or Cython
instances, or class instances that contain modules as it uses `pickle`.
Details: in some cases the execution may be considerably slowed down,
as for example in previous tests done with test suites from coco/bbob.
Comparing setting ``number_of_processes = 0`` with
``number_of_processes = 1`` evaluates the overhead introduced by
``multiprocessing.Pool.apply_async``.
"""
def __init__(self, fitness_function=None, number_of_processes=None):
self.fitness_function = fitness_function
self.processes = number_of_processes # for the record
if self.processes is None or self.processes > 0:
self.pool = ProcessingPool(self.processes)
else:
self.pool = None
def __call__(self, solutions, fitness_function=None, args=(), timeout=None):
"""evaluate a list/sequence of solution-"vectors", return a list
of corresponding f-values.
`args` must be a tuple and is passed to `fitness_function` like
``fitness_function(solutions[0], *args)``. For example, a single
argument, say `a1`, should be passed like ``args=(a1, )``.
Raises `multiprocessing.TimeoutError` if `timeout` is given and
exceeded.
"""
fitness_function = fitness_function or self.fitness_function
if fitness_function is None:
raise ValueError("`fitness_function` was never given, must be"
" passed in `__init__` or `__call__`")
if not self.pool:
return [fitness_function(x, *args) for x in solutions]
warning_str = ("`fitness_function` must be a function, not a"
" `lambda` or an instancemethod, in order to work with"
" `multiprocessing` under Python 2")
if sys.version[0] == '2':
if isinstance(fitness_function, type(self.__init__)):
warnings.warn(warning_str)
jobs = [self.pool.apply_async(fitness_function, (x,) + args)
for x in solutions]
try:
return [job.get(timeout) for job in jobs]
except:
sys.version[0] == '2' and warnings.warn(warning_str)
raise
def terminate(self):
"""free allocated processing pool"""
if not self.pool:
return
# self.pool.close() # would wait for job termination
self.pool.terminate() # terminate jobs regardless
self.pool.join() # end spawning
def __enter__(self):
# we could assign self.pool here, but then `EvalParallel2` would
# *only* work when using the `with` statement
return self
def __exit__(self, exc_type, exc_value, traceback):
self.terminate()
def __del__(self):
"""though generally not recommended `__del__` should be OK here"""
self.terminate()
class BestSolution(object):
"""container to keep track of the best solution seen.
Keeps also track of the genotype, if available.
"""
def __init__(self, x=None, f=np.inf, evals=None):
"""initialize the best solution with ``x``, ``f``, and ``evals``.
Better solutions have smaller ``f``-values.
"""
self.x = x
self.x_geno = None
self.f = f if f is not None and f is not np.nan else np.inf
self.evals = evals
self.evalsall = evals
self.compared = 0
" number of overall compared values, posterior hack"
self.last = _BlancClass()
self.last.x = x
self.last.f = f
def update(self, arx, xarchive=None, arf=None, evals=None):
"""checks for better solutions in list ``arx``.
Based on the smallest corresponding value in ``arf``,
alternatively, `update` may be called with a `BestSolution`
instance like ``update(another_best_solution)`` in which case
the better solution becomes the current best.
``xarchive`` is used to retrieve the genotype of a solution.
"""
if isinstance(arx, BestSolution):
if self.evalsall is None:
self.evalsall = arx.evalsall
elif arx.evalsall is not None:
self.evalsall = max((self.evalsall, arx.evalsall))
if arx.f is not None and arx.f < np.inf:
self.update([arx.x], xarchive, [arx.f], arx.evals)
self.compared += arx.compared
return self
assert arf is not None
self.compared += len(arf)
# find failsave minimum
try:
minidx = np.nanargmin(arf)
except ValueError:
return
if minidx is np.nan:
return
minarf = arf[minidx]
# minarf = reduce(lambda x, y: y if y and y is not np.nan
# and y < x else x, arf, np.inf)
if minarf < np.inf and (minarf < self.f or self.f is None):
self.x, self.f = arx[minidx], arf[minidx]
if xarchive is not None and xarchive.get(self.x) is not None:
self.x_geno = xarchive[self.x].get('geno')
else:
self.x_geno = None
self.evals = None if not evals else evals - len(arf) + minidx + 1
self.evalsall = evals
elif evals:
self.evalsall = evals
self.last.x = arx[minidx]
self.last.f = minarf
def get(self):
"""return ``(x, f, evals)`` """
return self.x, self.f, self.evals # , self.x_geno
class BestSolution2(object):
"""minimal tracker of a smallest f-value with variable meta-info"""
def __init__(self):
self.f = np.inf
self.x = None
self.info = None
self.count_saved = None
self.count = 0
" number of overall compared values"
self.previous = None
def update(self, f, x=None, info=None, info_construct=None):
"""`info` may be a dictionary with everything we want to know,
`info_construct` may be used to finalize versatile elements of
`info`, like make a copy of an array within the info dictionary
"""
self.count += 1
if self.count == 1 or (np.isfinite(f) and (not np.isfinite(self.f) or f < self.f)):
self.previous = dict(self.__dict__)
del self.previous['previous'] # otherwise we get a linked list of all previous entries
self.f = f
self.x = x
self.info = info_construct(info) if info_construct else info
self.count_saved = self.count
return self
def __str__(self):
return str(self.__dict__)
class ExponentialSmoothing(object):
"""not in use (yet)
Exponentially smoothened vector, new data are added via
calling the class instance. The `normalizer` is applied to
the weight ``1 / time_constant`` used for the new data.
"""
def __init__(self, time_constant=None, normalizer=lambda x: x):
self.time_constant = time_constant
if self.time_constant is not None and self.time_constant < 1:
raise ValueError("time_constant = %d must be >=1" % self.time_constant)
self.normalizer = normalizer
self.values = None
self.count = 0
def _init_(self, v):
self.values = np.array(v, dtype=float)
if self.time_constant is None:
self.time_constant = 1 + len(v)**0.5
def __getitem__(self, i):
return self.values[i]
def __call__(self, v):
if self.values is None:
self._init_(v)
self.count += 1
tc = np.min((self.count, self.time_constant))
self.values *= 1 - 1 / tc
self.values += self.normalizer(1 / tc) * np.asarray(v)
return self
class EvolutionPath(ExponentialSmoothing):
"""not in use (yet)
A variance-neutral exponentially smoothened vector.
"""
def __init__(self, time_constant=None):
super(EvolutionPath, self).__init__(
time_constant, lambda x: np.sqrt(x * (2 - x)))
@property
def path(self):
return self.values
class BinaryEvolutionPath(EvolutionPath):
@property
def probability_larger_than_one_from_binary(self):
"""propability of path entries to be larger than one,
given the input is ``sign(randn())``. Check out::
n = int(1e4)
greater_than_one = []
ar_tc = [1.2, 1.5, 1.9, 2, 4, 8, 16, 32, 100]
for tc in ar_tc:
p = cma.optimization_tools.EvolutionPath(tc)
for i in range(int(10 * tc)):
p(np.sign(np.random.randn(n)))
# plot(*step_data(p.path))
greater_than_one += [(np.mean(p.path > 1) + np.mean(p.path < -1)) / 2]
"""
return np.minimum(0.25, 0.15865525393145707 # these come from the math for tc=1 and tc=infty
+ 0.2 / np.asarray(self.time_constant)**1.9) # empirical fit to the data
@property
def raw_binary_s(self):
"""return one of two possible values with expectation of zero.
the maximum for the larger value is 1 - 0.15865525393145707 for tc to infty.
"""
# p * (I - p) + (1 - p) * (0 - p) = p - p^2 - p + p^2 = 0
return (np.abs(self.values) > 1) - self.probability_larger_than_one_from_binary
def binary_s(self, odds_of_increment=1):
"""how many increments for one decrement in stationary state"""
s = self.raw_binary_s
s[s > 0] /= odds_of_increment
return s
class OldEvolutionPath(object):
"""not in use (yet)
A variance-neutral exponentially smoothened vector.
"""
def __init__(self, p0, time_constant=None):
self.path = np.asarray(p0)
self.count = 0
self.time_constant = time_constant
if time_constant is None:
self.time_constant = 1 + len(p0)**0.5
def update(self, v):
self.count += 1
c = max((1 / self.count, 1. / self.time_constant))
self.path *= 1 - c
self.path += (c * (2 - c))**0.5 * np.asarray(v)
class NoiseHandler(object):
"""Noise handling according to [Hansen et al 2009, A Method for
Handling Uncertainty in Evolutionary Optimization...]
The interface of this class is yet versatile and subject to changes.
The noise handling follows closely [Hansen et al 2009] in the
measurement part, but the implemented treatment is slightly
different: for ``noiseS > 0``, ``evaluations`` (time) and sigma are
increased by ``alpha``. For ``noiseS < 0``, ``evaluations`` (time)
is decreased by ``alpha**(1/4)``.
The (second) parameter ``evaluations`` defines the maximal number
of evaluations for a single fitness computation. If it is a list,
the smallest element defines the minimal number and if the list has
three elements, the median value is the start value for
``evaluations``.
`NoiseHandler` serves to control the noise via steps-size
increase and number of re-evaluations, for example via `fmin` or
with `ask_and_eval`.
Examples
--------
Minimal example together with `fmin` on a non-noisy function:
>>> import cma
>>> res = cma.fmin(cma.ff.elli, 7 * [1], 1, noise_handler=cma.NoiseHandler(7)) #doctest: +ELLIPSIS
(4_w,9)-aCMA-ES (mu_w=2.8,...
>>> assert res[1] < 1e-8
>>> res = cma.fmin(cma.ff.elli, 6 * [1], 1, {'AdaptSigma':cma.sigma_adaptation.CMAAdaptSigmaTPA},
... noise_handler=cma.NoiseHandler(6)) #doctest: +ELLIPSIS
(4_w,...
>>> assert res[1] < 1e-8
in dimension 7 (which needs to be given tice). More verbose example
in the optimization loop with a noisy function defined in ``func``:
>>> import cma, numpy as np
>>> func = lambda x: cma.ff.sphere(x) * (1 + 4 * np.random.randn() / len(x)) # cma.ff.noisysphere
>>> es = cma.CMAEvolutionStrategy(np.ones(10), 1) #doctest: +ELLIPSIS
(5_w,10)-aCMA-ES (mu_w=3.2,...
>>> nh = cma.NoiseHandler(es.N, maxevals=[1, 1, 30])
>>> while not es.stop():
... X, fit_vals = es.ask_and_eval(func, evaluations=nh.evaluations)
... es.tell(X, fit_vals) # prepare for next iteration
... es.sigma *= nh(X, fit_vals, func, es.ask) # see method __call__
... es.countevals += nh.evaluations_just_done # this is a hack, not important though
... es.logger.add(more_data = [nh.evaluations, nh.noiseS]) # add a data point
... es.disp()
... # nh.maxevals = ... it might be useful to start with smaller values and then increase
... # doctest: +ELLIPSIS
Iterat...
>>> print(es.stop())
... # doctest: +ELLIPSIS
{...
>>> print(es.result[-2]) # take mean value, the best solution is totally off
... # doctest: +ELLIPSIS
[...
>>> assert sum(es.result[-2]**2) < 1e-9
>>> print(X[np.argmin(fit_vals)]) # not bad, but probably worse than the mean
... # doctest: +ELLIPSIS
[...
>>> # es.logger.plot()
The command ``logger.plot()`` will plot the logged data.
The noise options of fmin` control a `NoiseHandler` instance
similar to this example. The command ``cma.CMAOptions('noise')``
lists in effect the parameters of `__init__` apart from
``aggregate``.
Details
-------
The parameters reevals, theta, c_s, and alpha_t are set differently
than in the original publication, see method `__init__`. For a
very small population size, say popsize <= 5, the measurement
technique based on rank changes is likely to fail.
Missing Features
----------------
In case no noise is found, ``self.lam_reeval`` should be adaptive
and get at least as low as 1 (however the possible savings from this
are rather limited). Another option might be to decide during the
first call by a quantitative analysis of fitness values whether
``lam_reeval`` is set to zero. More generally, an automatic noise
mode detection might also set the covariance matrix learning rates
to smaller values.
:See also: `fmin`, `CMAEvolutionStrategy.ask_and_eval`
"""
# TODO: for const additive noise a better version might be with alphasigma also used for sigma-increment,
# while all other variance changing sources are removed (because they are intrinsically biased). Then
# using kappa to get convergence (with unit sphere samples): noiseS=0 leads to a certain kappa increasing rate?
def __init__(self, N, maxevals=[1, 1, 1], aggregate=np.median,
reevals=None, epsilon=1e-7, parallel=False):
"""Parameters are:
``N``
dimension, (only) necessary to adjust the internal
"alpha"-parameters
``maxevals``
maximal value for ``self.evaluations``, where
``self.evaluations`` function calls are aggregated for
noise treatment. With ``maxevals == 0`` the noise
handler is (temporarily) "switched off". If `maxevals`
is a list, min value and (for >2 elements) median are
used to define minimal and initial value of
``self.evaluations``. Choosing ``maxevals > 1`` is only
reasonable, if also the original ``fit`` values (that
are passed to `__call__`) are computed by aggregation of
``self.evaluations`` values (otherwise the values are
not comparable), as it is done within `fmin`.
``aggregate``
function to aggregate single f-values to a 'fitness', e.g.
``np.median``.
``reevals``
number of solutions to be reevaluated for noise
measurement, can be a float, by default set to ``2 +
popsize/20``, where ``popsize = len(fit)`` in
``__call__``. zero switches noise handling off.
``epsilon``
multiplier for perturbation of the reevaluated solutions
``parallel``
a single f-call with all resampled solutions
:See also: `fmin`, `CMAOptions`, `CMAEvolutionStrategy.ask_and_eval`
"""
self.lam_reeval = reevals # 2 + popsize/20, see method indices(), originally 2 + popsize/10
self.epsilon = epsilon
self.parallel = parallel
## meta_parameters.noise_theta == 0.5
self.theta = 0.5 # 0.5 # originally 0.2
self.cum = 0.3 # originally 1, 0.3 allows one disagreement of current point with resulting noiseS
## meta_parameters.noise_alphasigma == 2.0
self.alphasigma = 1 + 2.0 / (N + 10) # 2, unit sphere sampling: 1 + 1 / (N + 10)
## meta_parameters.noise_alphaevals == 2.0
self.alphaevals = 1 + 2.0 / (N + 10) # 2, originally 1.5
## meta_parameters.noise_alphaevalsdown_exponent == -0.25
self.alphaevalsdown = self.alphaevals** -0.25 # originally 1/1.5
# zzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzz
if 11 < 3 and maxevals[2] > 1e18: # for testing purpose
self.alphaevals = 1.5
self.alphaevalsdown = self.alphaevals**-0.999 # originally 1/1.5
self.evaluations = 1
"""number of f-evaluations to get a single measurement by aggregation"""
self.minevals = 1
self.maxevals = int(np.max(maxevals))
if hasattr(maxevals, '__contains__'): # i.e. can deal with ``in``
if len(maxevals) > 1:
self.minevals = min(maxevals)
self.evaluations = self.minevals
if len(maxevals) > 2:
self.evaluations = np.median(maxevals)
## meta_parameters.noise_aggregate == None
self.f_aggregate = aggregate if not None else {1: np.median, 2: np.mean}[ None ]
self.evaluations_just_done = 0 # actually conducted evals, only for documentation
self.noiseS = 0
def __call__(self, X, fit, func, ask=None, args=()):
"""proceed with noise measurement, set anew attributes ``evaluations``
(proposed number of evaluations to "treat" noise) and ``evaluations_just_done``
and return a factor for increasing sigma.
Parameters
----------
``X``
a list/sequence/vector of solutions
``fit``
the respective list of function values
``func``
the objective function, ``fit[i]`` corresponds to
``func(X[i], *args)``
``ask``
a method to generate a new, slightly disturbed solution. The
argument is (only) mandatory if ``epsilon`` is not zero, see
`__init__`.
``args``
optional additional arguments to ``func``
Details
-------
Calls the methods `reeval`, `update_measure` and ``treat` in
this order. ``self.evaluations`` is adapted within the method
`treat`.
"""
self.evaluations_just_done = 0
if not self.maxevals or self.lam_reeval == 0:
return 1.0
res = self.reeval(X, fit, func, ask, args)
if not len(res):
return 1.0
self.update_measure()
return self.treat()
def treat(self):
"""adapt self.evaluations depending on the current measurement
value and return ``sigma_fac in (1.0, self.alphasigma)``
"""
if self.noiseS > 0:
self.evaluations = min((self.evaluations * self.alphaevals, self.maxevals))
return self.alphasigma
else:
self.evaluations = max((self.evaluations * self.alphaevalsdown, self.minevals))
return 1.0 # / self.alphasigma
def reeval(self, X, fit, func, ask, args=()):
"""store two fitness lists, `fit` and ``fitre`` reevaluating some
solutions in `X`.
``self.evaluations`` evaluations are done for each reevaluated
fitness value.
See `__call__`, where `reeval` is called.
"""
self.fit = list(fit)
self.fitre = list(fit)
self.idx = self.indices(fit)
if not len(self.idx):
return self.idx
evals = int(self.evaluations) if self.f_aggregate else 1
fagg = np.median if self.f_aggregate is None else self.f_aggregate
for i in self.idx:
X_i = X[i]
if self.epsilon:
if self.parallel:
self.fitre[i] = fagg(func(ask(evals, X_i, self.epsilon), *args))
else:
self.fitre[i] = fagg([func(ask(1, X_i, self.epsilon)[0], *args)
for _k in range(evals)])
else:
self.fitre[i] = fagg([func(X_i, *args) for _k in range(evals)])
self.evaluations_just_done = evals * len(self.idx)
return self.fit, self.fitre, self.idx
def update_measure(self):
"""updated noise level measure using two fitness lists ``self.fit`` and
``self.fitre``, return ``self.noiseS, all_individual_measures``.
Assumes that ``self.idx`` contains the indices where the fitness
lists differ.
"""
lam = len(self.fit)
idx = np.argsort(self.fit + self.fitre)
ranks = np.argsort(idx).reshape((2, lam))
rankDelta = ranks[0] - ranks[1] - np.sign(ranks[0] - ranks[1])
# compute rank change limits using both ranks[0] and ranks[1]
r = np.arange(1, 2 * lam) # 2 * lam - 2 elements
limits = [0.5 * (Mh.prctile(np.abs(r - (ranks[0, i] + 1 - (ranks[0, i] > ranks[1, i]))),
self.theta * 50) +
Mh.prctile(np.abs(r - (ranks[1, i] + 1 - (ranks[1, i] > ranks[0, i]))),
self.theta * 50))
for i in self.idx]
# compute measurement
# max: 1 rankchange in 2*lambda is always fine
s = np.abs(rankDelta[self.idx]) - Mh.amax(limits, 1) # lives roughly in 0..2*lambda
self.noiseS += self.cum * (np.mean(s) - self.noiseS)
return self.noiseS, s
def indices(self, fit):
"""return the set of indices to be reevaluated for noise
measurement.
Given the first values are the earliest, this is a useful policy
also with a time changing objective.
"""
## meta_parameters.noise_reeval_multiplier == 1.0
lam_reev = 1.0 * (self.lam_reeval if self.lam_reeval
else 2 + len(fit) / 20)
lam_reev = int(lam_reev) + ((lam_reev % 1) > np.random.rand())
## meta_parameters.noise_choose_reeval == 1
choice = 1
if choice == 1:
# take n_first first and reev - n_first best of the remaining
n_first = lam_reev - lam_reev // 2
sort_idx = np.argsort(np.asarray(fit)[n_first:]) + n_first
return np.asarray(list(range(0, n_first)) +
list(sort_idx[0:lam_reev - n_first]))
elif choice == 2:
idx_sorted = np.argsort(np.asarray(fit))
# take lam_reev equally spaced, starting with best
linsp = np.linspace(0, len(fit) - len(fit) / lam_reev, lam_reev)
return idx_sorted[[int(i) for i in linsp]]
# take the ``lam_reeval`` best from the first ``2 * lam_reeval + 2`` values.
elif choice == 3:
return np.argsort(np.asarray(fit)[:2 * (lam_reev + 1)])[:lam_reev]
else:
raise ValueError('unrecognized choice value %d for noise reev'
% choice)
class Sections(object):
"""plot sections through an objective function.
A first rational thing to do, when facing an (expensive)
application. By default 6 points in each coordinate are evaluated.
This class is still experimental.
Examples
--------
::
import cma, numpy as np
s = cma.Sections(cma.ff.rosen, np.zeros(3)).do(plot=False)
s.do(plot=False) # evaluate the same points again, i.e. check for noise
try:
s.plot()
except:
print('plotting failed: matplotlib.pyplot package missing?')
Details
-------
Data are saved after each function call during `do`. The filename
is attribute ``name`` and by default ``str(func)``, see `__init__`.
A random (orthogonal) basis can be generated with
``cma.Rotation()(np.eye(3))``.
CAVEAT: The default name is unique in the function name, but it
should be unique in all parameters of `__init__` but `plot_cmd`
and `load`. If, for example, a different basis is chosen, either
the name must be changed or the ``.pkl`` file containing the
previous data must first be renamed or deleted.
``s.res`` is a dictionary with an entry for each "coordinate" ``i``
and with an entry ``'x'``, the middle point. Each entry ``i`` is
again a dictionary with keys being different dx values and the
value being a sequence of f-values. For example ``s.res[2][0.1] ==
[0.01, 0.01]``, which is generated using the difference vector ``s
.basis[2]`` like
``s.res[2][dx] += func(s.res['x'] + dx * s.basis[2])``.
:See also: `__init__`
"""
def __init__(self, func, x, args=(), basis=None, name=None,
plot_cmd=None, load=True):
"""
Parameters
----------
``func``
objective function
``x``
point in search space, middle point of the sections
``args``
arguments passed to `func`
``basis``
evaluated points are ``func(x + locations[j] * basis[i])
for i in len(basis) for j in len(locations)``,
see `do()`
``name``
filename where to save the result
``plot_cmd``
command used to plot the data, typically matplotlib pyplots
`plot` or `semilogy`
``load``
load previous data from file ``str(func) + '.pkl'``
"""
if plot_cmd is None:
from matplotlib.pyplot import plot as plot_cmd
self.func = func
self.args = args
self.x = x
self.name = name if name else str(func).replace(' ', '_').replace('>', '').replace('<', '')
self.plot_cmd = plot_cmd # or semilogy
self.basis = np.eye(len(x)) if basis is None else basis
try:
load and self.load()
if any(self.res['x'] != x):
self.res = {}
self.res['x'] = x # TODO: res['x'] does not look perfect
else:
print(self.name + ' loaded')
except:
self.res = {}
self.res['x'] = x
def do(self, repetitions=1, locations=np.arange(-0.5, 0.6, 0.2), plot=True):
"""generates, plots and saves function values ``func(y)``,
where ``y`` is 'close' to `x` (see `__init__()`). The data are stored in
the ``res`` attribute and the class instance is saved in a file
with (the weired) name ``str(func)``.
Parameters
----------
``repetitions``
for each point, only for noisy functions is >1 useful. For
``repetitions==0`` only already generated data are plotted.
``locations``
coordinated wise deviations from the middle point given in
`__init__`
"""
if not repetitions:
self.plot()
return
res = self.res
for i in range(len(self.basis)): # i-th coordinate
if i not in res:
res[i] = {}
# xx = np.array(self.x)
# TODO: store res[i]['dx'] = self.basis[i] here?
for dx in locations:
xx = self.x + dx * self.basis[i]
xkey = dx # xx[i] if (self.basis == np.eye(len(self.basis))).all() else dx
if xkey not in res[i]:
res[i][xkey] = []
n = repetitions
while n > 0:
n -= 1
res[i][xkey].append(self.func(xx, *self.args))
if plot:
self.plot()
self.save()
return self
def plot(self, plot_cmd=None, tf=lambda y: y):
"""plot the data we have, return ``self``"""
from matplotlib import pyplot
if not plot_cmd:
plot_cmd = self.plot_cmd
colors = 'bgrcmyk'
pyplot.gcf().clear()
res = self.res
flatx, flatf = self.flattened()
minf = np.inf
for i in flatf:
minf = min((minf, min(flatf[i])))
addf = 1e-9 - minf if minf <= 1e-9 else 0
for i in sorted(k for k in res.keys() if isinstance(k, int)): # we plot not all values here
color = colors[i % len(colors)]
arx = sorted(res[i].keys())
plot_cmd(arx, [tf(np.median(res[i][x]) + addf) for x in arx], color + '-')
pyplot.text(arx[-1], tf(np.median(res[i][arx[-1]])), i)
if len(flatx[i]) < 11:
plot_cmd(flatx[i], tf(np.array(flatf[i]) + addf), color + 'o')
pyplot.ylabel('f + ' + str(addf))
pyplot.draw()
pyplot.ion()
pyplot.show()
return self
def flattened(self):
"""return flattened data ``(x, f)`` such that for the sweep
through coordinate ``i`` we have for data point ``j`` that
``f[i][j] == func(x[i][j])``
"""
flatx = {}
flatf = {}
for i in self.res:
if isinstance(i, int):
flatx[i] = []
flatf[i] = []
for x in sorted(self.res[i]):
for d in sorted(self.res[i][x]):
flatx[i].append(x)
flatf[i].append(d)
return flatx, flatf
def save(self, name=None):
"""save to file"""
import pickle
name = name if name else self.name
fun = self.func
del self.func # instance method produces error
pickle.dump(self, open(name + '.pkl', "wb"))
self.func = fun
return self
def load(self, name=None):
"""load from file"""
import pickle
name = name if name else self.name
s = pickle.load(open(name + '.pkl', 'rb'))
self.res = s.res # disregard the class