-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathneural_decoder_trainer.py
173 lines (143 loc) · 5.34 KB
/
neural_decoder_trainer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
from neural_decoder.model import GRUDecoder
from neural_decoder.dataset import SpeechDataModule
from neural_decoder.callbacks import TimerCallback
from datetime import datetime
import hydra
from hydra.core.hydra_config import HydraConfig
from omegaconf import OmegaConf
import os
import pickle
import pytorch_lightning as pl
from pytorch_lightning.callbacks import ModelCheckpoint
from pytorch_lightning.loggers import TensorBoardLogger
from pytorch_lightning.strategies import DDPStrategy
import sys
import torch
import wandb
SCRIPT_DIR = os.path.dirname(os.path.abspath(__file__))
sys.path.append(os.path.dirname(SCRIPT_DIR))
# local modules
torch.set_float32_matmul_precision("medium")
def trainModel(args):
# set seed
pl.seed_everything(args["seed"], workers=True)
if torch.cuda.is_available():
torch.cuda.manual_seed_all(args["seed"])
torch.backends.cudnn.deterministic = True
# output directory
local_rank = int(os.environ.get('LOCAL_RANK', 0))
if 'wandb' in args and args.wandb.enabled and local_rank == 0:
args["outputDir"] = os.path.join(args["outputDir"], wandb.run.name)
else:
args["outputDir"] = os.path.join(
args["outputDir"],
f"run_{datetime.now().strftime('%Y%m%d-%H%M%S')}")
if local_rank == 0:
os.makedirs(args["outputDir"], exist_ok=True)
with open(os.path.join(args["outputDir"], "args"), "wb") as file:
pickle.dump(args, file)
# load data
with open(args["datasetPath"], "rb") as handle:
loadedData = pickle.load(handle)
# data module
dm = SpeechDataModule(loadedData, args["batchSize"], args["numWorkers"])
# tensorboard logger
logger = TensorBoardLogger(args["outputDir"], name="torch_dist_v0")
# model
model = GRUDecoder(
neural_dim=args["nInputFeatures"],
n_classes=args["nClasses"],
hidden_dim=args["nUnits"],
layer_dim=args["nLayers"],
nDays=len(loadedData["train"]),
dropout=args["dropout"],
strideLen=args["strideLen"],
kernelLen=args["kernelLen"],
gaussianSmoothWidth=args["gaussianSmoothWidth"],
whiteNoiseSD=args["whiteNoiseSD"],
constantOffsetSD=args["constantOffsetSD"],
bidirectional=args["bidirectional"],
l2_decay=args["l2_decay"],
lrStart=args["lrStart"],
lrEnd=args["lrEnd"],
momentum=args["momentum"],
nesterov=args["nesterov"],
gamma=args["gamma"],
stepSize=args["stepSize"],
nBatch=args["nSteps"],
output_dir=args["outputDir"]
)
# checkpoint callback
checkpointCallback = ModelCheckpoint(
filename=args["outputDir"] + "/modelWeights", monitor="val/ser",
mode="min", save_top_k=1, every_n_train_steps=None)
checkpointCallback.FILE_EXTENSION = ""
# trainer
trainer = pl.Trainer(
strategy=DDPStrategy(find_unused_parameters=True),
logger=logger,
min_steps=1,
max_steps=args["nSteps"],
accelerator=args["accelerator"],
devices=args["devices"],
precision=args["precision"],
num_nodes=1,
log_every_n_steps=1,
val_check_interval=100,
check_val_every_n_epoch=None,
callbacks=[checkpointCallback, TimerCallback()]
)
# train
trainer.fit(model, dm)
def loadModel(modelWeightPath, nInputLayers=24, device="cuda"):
# load pl model
pl_model = torch.load(modelWeightPath, map_location=device)
# load hyperparameters
args = pl_model["hyper_parameters"]
state_dict = pl_model["state_dict"]
model = GRUDecoder(
neural_dim=args["neural_dim"],
n_classes=args["n_classes"],
hidden_dim=args["hidden_dim"],
layer_dim=args["layer_dim"],
nDays=nInputLayers,
dropout=args["dropout"],
strideLen=args["strideLen"],
kernelLen=args["kernelLen"],
gaussianSmoothWidth=args["gaussianSmoothWidth"],
whiteNoiseSD=args["whiteNoiseSD"],
constantOffsetSD=args["constantOffsetSD"],
bidirectional=args["bidirectional"],
l2_decay=args["l2_decay"],
lrStart=args["lrStart"],
lrEnd=args["lrEnd"],
momentum=args["momentum"],
nesterov=args["nesterov"],
gamma=args["gamma"],
stepSize=args["stepSize"],
nBatch=args["nSteps"],
output_dir=args["output_dir"]
).to(device)
model.load_state_dict(state_dict)
return model
@hydra.main(version_base="1.1", config_path="conf", config_name="config_1")
def main(cfg):
# local rank for distributed training
local_rank = int(os.environ.get('LOCAL_RANK', 0))
conf_name = HydraConfig.get().job.config_name
if 'wandb' in cfg and cfg.wandb.enabled:
wandb_config = OmegaConf.to_container(cfg, resolve=True)
wandb_config['hyperparam_setting'] = conf_name[conf_name.index("_")+1:]
run_name = f"run_{datetime.now().strftime('%Y%m%d-%H%M%S-')}" + \
wandb_config['hyperparam_setting']
print(f"config: {conf_name[conf_name.index('_')+1:]}")
if local_rank == 0:
run = wandb.init(**cfg.wandb.setup,
config=wandb_config,
name=run_name,
sync_tensorboard=True)
trainModel(cfg)
if 'wandb' in cfg and cfg.wandb.enabled:
run.finish()
if __name__ == "__main__":
main()