-
Notifications
You must be signed in to change notification settings - Fork 252
/
Copy pathstep24.v
436 lines (360 loc) · 13.2 KB
/
step24.v
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
/**
* Step 24: Creating a RISC-V processor
* Running programs from Mapped SPI flash (reset addr)
*/
`default_nettype none
`include "clockworks.v"
`include "emitter_uart.v"
`include "spi_flash.v"
module Memory (
input clk,
input [31:0] mem_addr, // address to be read
output reg [31:0] mem_rdata, // data read from memory
input mem_rstrb, // goes high when processor wants to read
input [31:0] mem_wdata, // data to be written
input [3:0] mem_wmask // masks for writing the 4 bytes (1=write byte)
);
reg [31:0] MEM [0:1535]; // 1536 4-bytes words = 6 Kb of RAM in total
wire [10:0] word_addr = mem_addr[12:2];
always @(posedge clk) begin
if(mem_rstrb) begin
mem_rdata <= MEM[word_addr];
end
if(mem_wmask[0]) MEM[word_addr][ 7:0 ] <= mem_wdata[ 7:0 ];
if(mem_wmask[1]) MEM[word_addr][15:8 ] <= mem_wdata[15:8 ];
if(mem_wmask[2]) MEM[word_addr][23:16] <= mem_wdata[23:16];
if(mem_wmask[3]) MEM[word_addr][31:24] <= mem_wdata[31:24];
end
endmodule
module Processor (
input clk,
input resetn,
output [31:0] mem_addr,
input [31:0] mem_rdata,
input mem_rbusy,
output mem_rstrb,
output [31:0] mem_wdata,
output [3:0] mem_wmask
);
// Internal width for addresses.
localparam ADDR_WIDTH=24;
reg [ADDR_WIDTH:0] PC=0; // program counter
reg [31:2] instr; // current instruction
// See the table P. 105 in RISC-V manual
// The 10 RISC-V instructions
wire isALUreg = (instr[6:2] == 5'b01100); // rd <- rs1 OP rs2
wire isALUimm = (instr[6:2] == 5'b00100); // rd <- rs1 OP Iimm
wire isBranch = (instr[6:2] == 5'b11000); // if(rs1 OP rs2) PC<-PC+Bimm
wire isJALR = (instr[6:2] == 5'b11001); // rd <- PC+4; PC<-rs1+Iimm
wire isJAL = (instr[6:2] == 5'b11011); // rd <- PC+4; PC<-PC+Jimm
wire isAUIPC = (instr[6:2] == 5'b00101); // rd <- PC + Uimm
wire isLUI = (instr[6:2] == 5'b01101); // rd <- Uimm
wire isLoad = (instr[6:2] == 5'b00000); // rd <- mem[rs1+Iimm]
wire isStore = (instr[6:2] == 5'b01000); // mem[rs1+Simm] <- rs2
wire isSYSTEM = (instr[6:2] == 5'b11100); // special
// The 5 immediate formats
wire [31:0] Uimm={ instr[31], instr[30:12], {12{1'b0}}};
wire [31:0] Iimm={{21{instr[31]}}, instr[30:20]};
/* verilator lint_off UNUSED */ // MSBs of SBJimms are not used by addr adder.
wire [31:0] Simm={{21{instr[31]}}, instr[30:25],instr[11:7]};
wire [31:0] Bimm={{20{instr[31]}}, instr[7],instr[30:25],instr[11:8],1'b0};
wire [31:0] Jimm={{12{instr[31]}}, instr[19:12],instr[20],instr[30:21],1'b0};
/* verilator lint_on UNUSED */
// Destination registers
wire [4:0] rdId = instr[11:7];
// function codes
wire [2:0] funct3 = instr[14:12];
wire [6:0] funct7 = instr[31:25];
// The registers bank
reg [31:0] RegisterBank [0:31];
reg [31:0] rs1; // value of source
reg [31:0] rs2; // registers.
wire [31:0] writeBackData; // data to be written to rd
wire writeBackEn; // asserted if data should be written to rd
`ifdef BENCH
integer i;
initial begin
for(i=0; i<32; ++i) begin
RegisterBank[i] = 0;
end
end
`endif
// The ALU
wire [31:0] aluIn1 = rs1;
wire [31:0] aluIn2 = isALUreg | isBranch ? rs2 : Iimm;
wire [4:0] shamt = isALUreg ? rs2[4:0] : instr[24:20]; // shift amount
// The adder is used by both arithmetic instructions and JALR.
wire [31:0] aluPlus = aluIn1 + aluIn2;
// Use a single 33 bits subtract to do subtraction and all comparisons
// (trick borrowed from swapforth/J1)
wire [32:0] aluMinus = {1'b1, ~aluIn2} + {1'b0,aluIn1} + 33'b1;
wire LT = (aluIn1[31] ^ aluIn2[31]) ? aluIn1[31] : aluMinus[32];
wire LTU = aluMinus[32];
wire EQ = (aluMinus[31:0] == 0);
// Flip a 32 bit word. Used by the shifter (a single shifter for
// left and right shifts, saves silicium !)
function [31:0] flip32;
input [31:0] x;
flip32 = {x[ 0], x[ 1], x[ 2], x[ 3], x[ 4], x[ 5], x[ 6], x[ 7],
x[ 8], x[ 9], x[10], x[11], x[12], x[13], x[14], x[15],
x[16], x[17], x[18], x[19], x[20], x[21], x[22], x[23],
x[24], x[25], x[26], x[27], x[28], x[29], x[30], x[31]};
endfunction
wire [31:0] shifter_in = (funct3 == 3'b001) ? flip32(aluIn1) : aluIn1;
/* verilator lint_off WIDTH */
wire [31:0] shifter =
$signed({instr[30] & aluIn1[31], shifter_in}) >>> aluIn2[4:0];
/* verilator lint_on WIDTH */
wire [31:0] leftshift = flip32(shifter);
// ADD/SUB/ADDI:
// funct7[5] is 1 for SUB and 0 for ADD. We need also to test instr[5]
// to make the difference with ADDI
//
// SRLI/SRAI/SRL/SRA:
// funct7[5] is 1 for arithmetic shift (SRA/SRAI) and
// 0 for logical shift (SRL/SRLI)
reg [31:0] aluOut;
always @(*) begin
case(funct3)
3'b000: aluOut = (funct7[5] & instr[5]) ? aluMinus[31:0] : aluPlus;
3'b001: aluOut = leftshift;
3'b010: aluOut = {31'b0, LT};
3'b011: aluOut = {31'b0, LTU};
3'b100: aluOut = (aluIn1 ^ aluIn2);
3'b101: aluOut = shifter;
3'b110: aluOut = (aluIn1 | aluIn2);
3'b111: aluOut = (aluIn1 & aluIn2);
endcase
end
// The predicate for branch instructions
reg takeBranch;
always @(*) begin
case(funct3)
3'b000: takeBranch = EQ;
3'b001: takeBranch = !EQ;
3'b100: takeBranch = LT;
3'b101: takeBranch = !LT;
3'b110: takeBranch = LTU;
3'b111: takeBranch = !LTU;
default: takeBranch = 1'b0;
endcase
end
// Address computation
/* verilator lint_off WIDTH */
// An adder used to compute branch address, JAL address and AUIPC.
// branch->PC+Bimm AUIPC->PC+Uimm JAL->PC+Jimm
// Equivalent to PCplusImm = PC + (isJAL ? Jimm : isAUIPC ? Uimm : Bimm)
// Note: doing so with ADDR_WIDTH < 32, AUIPC may fail in
// some RISC-V compliance tests because one can is supposed to use
// it to generate arbitrary 32-bit values (and not only addresses).
wire [ADDR_WIDTH-1:0] PCplusImm = PC + ( instr[3] ? Jimm[31:0] :
instr[4] ? Uimm[31:0] :
Bimm[31:0] );
wire [ADDR_WIDTH-1:0] PCplus4 = PC+4;
wire [ADDR_WIDTH-1:0] nextPC = ((isBranch && takeBranch) || isJAL) ? PCplusImm :
isJALR ? {aluPlus[31:1],1'b0} :
PCplus4;
wire [ADDR_WIDTH-1:0] loadstore_addr = rs1 + (isStore ? Simm : Iimm);
// register write back
assign writeBackData = (isJAL || isJALR) ? PCplus4 :
isLUI ? Uimm :
isAUIPC ? PCplusImm :
isLoad ? LOAD_data :
aluOut;
/* verilator lint_on WIDTH */
// Load
// All memory accesses are aligned on 32 bits boundary. For this
// reason, we need some circuitry that does unaligned halfword
// and byte load/store, based on:
// - funct3[1:0]: 00->byte 01->halfword 10->word
// - mem_addr[1:0]: indicates which byte/halfword is accessed
wire mem_byteAccess = funct3[1:0] == 2'b00;
wire mem_halfwordAccess = funct3[1:0] == 2'b01;
wire [15:0] LOAD_halfword =
loadstore_addr[1] ? mem_rdata[31:16] : mem_rdata[15:0];
wire [7:0] LOAD_byte =
loadstore_addr[0] ? LOAD_halfword[15:8] : LOAD_halfword[7:0];
// LOAD, in addition to funct3[1:0], LOAD depends on:
// - funct3[2] (instr[14]): 0->do sign expansion 1->no sign expansion
wire LOAD_sign =
!funct3[2] & (mem_byteAccess ? LOAD_byte[7] : LOAD_halfword[15]);
wire [31:0] LOAD_data =
mem_byteAccess ? {{24{LOAD_sign}}, LOAD_byte} :
mem_halfwordAccess ? {{16{LOAD_sign}}, LOAD_halfword} :
mem_rdata ;
// Store
// ------------------------------------------------------------------------
assign mem_wdata[ 7: 0] = rs2[7:0];
assign mem_wdata[15: 8] = loadstore_addr[0] ? rs2[7:0] : rs2[15: 8];
assign mem_wdata[23:16] = loadstore_addr[1] ? rs2[7:0] : rs2[23:16];
assign mem_wdata[31:24] = loadstore_addr[0] ? rs2[7:0] :
loadstore_addr[1] ? rs2[15:8] : rs2[31:24];
// The memory write mask:
// 1111 if writing a word
// 0011 or 1100 if writing a halfword
// (depending on loadstore_addr[1])
// 0001, 0010, 0100 or 1000 if writing a byte
// (depending on loadstore_addr[1:0])
wire [3:0] STORE_wmask =
mem_byteAccess ?
(loadstore_addr[1] ?
(loadstore_addr[0] ? 4'b1000 : 4'b0100) :
(loadstore_addr[0] ? 4'b0010 : 4'b0001)
) :
mem_halfwordAccess ?
(loadstore_addr[1] ? 4'b1100 : 4'b0011) :
4'b1111;
// The state machine
localparam FETCH_INSTR = 0;
localparam WAIT_INSTR = 1;
localparam EXECUTE = 2;
localparam WAIT_DATA = 3;
reg [1:0] state = FETCH_INSTR;
always @(posedge clk) begin
if(!resetn) begin
PC <= 32'h00820000; // jump to SPI FLASH + 128 kB
state <= WAIT_DATA; // just wait for !mem_rbusy
end else begin
if(writeBackEn && rdId != 0) begin
RegisterBank[rdId] <= writeBackData;
end
case(state)
FETCH_INSTR: begin
state <= WAIT_INSTR;
end
WAIT_INSTR: begin
instr <= mem_rdata[31:2];
rs1 <= RegisterBank[mem_rdata[19:15]];
rs2 <= RegisterBank[mem_rdata[24:20]];
if(!mem_rbusy) begin
state <= EXECUTE;
end
end
EXECUTE: begin
if(!isSYSTEM) begin
/* verilator lint_off WIDTH */
PC <= nextPC;
/* verilator lint_on WIDTH */
end
state <= isLoad ? WAIT_DATA : FETCH_INSTR;
`ifdef BENCH
if(isSYSTEM) $finish();
`endif
end
WAIT_DATA: begin
if(!mem_rbusy) begin
state <= FETCH_INSTR;
end
end
endcase
end
end
assign writeBackEn = (state==EXECUTE && !isBranch && !isStore) ||
(state==WAIT_DATA) ;
/* verilator lint_off WIDTH */
assign mem_addr = (state == WAIT_INSTR || state == FETCH_INSTR) ?
PC : loadstore_addr ;
/* verilator lint_on WIDTH */
assign mem_rstrb = (state == FETCH_INSTR || (state == EXECUTE & isLoad));
assign mem_wmask = {4{(state == EXECUTE) & isStore}} & STORE_wmask;
endmodule
module SOC (
input CLK, // system clock
input RESET,// reset button
output reg [4:0] LEDS, // system LEDs
input RXD, // UART receive
output TXD, // UART transmit
output SPIFLASH_CLK, // SPI flash clock
output SPIFLASH_CS_N, // SPI flash chip select (active low)
inout [1:0] SPIFLASH_IO // SPI flash IO pins
);
wire clk;
wire resetn;
wire [31:0] mem_addr;
wire [31:0] mem_rdata;
wire mem_rbusy;
wire mem_rstrb;
wire [31:0] mem_wdata;
wire [3:0] mem_wmask;
Processor CPU(
.clk(clk),
.resetn(resetn),
.mem_addr(mem_addr),
.mem_rdata(mem_rdata),
.mem_rstrb(mem_rstrb),
.mem_rbusy(mem_rbusy),
.mem_wdata(mem_wdata),
.mem_wmask(mem_wmask)
);
wire [31:0] RAM_rdata;
wire [29:0] mem_wordaddr = mem_addr[31:2];
wire isSPIFlash = mem_addr[23];
wire isIO = mem_addr[23:22] == 2'b01;
wire isRAM = !(mem_addr[23] | mem_addr[22]);
wire mem_wstrb = |mem_wmask;
Memory RAM(
.clk(clk),
.mem_addr(mem_addr),
.mem_rdata(RAM_rdata),
.mem_rstrb(isRAM & mem_rstrb),
.mem_wdata(mem_wdata),
.mem_wmask({4{isRAM}}&mem_wmask)
);
wire [31:0] SPIFlash_rdata;
wire SPIFlash_rbusy;
MappedSPIFlash SPIFlash(
.clk(clk),
.word_address(mem_wordaddr[19:0]),
.rdata(SPIFlash_rdata),
.rstrb(isSPIFlash & mem_rstrb),
.rbusy(SPIFlash_rbusy),
.CLK(SPIFLASH_CLK),
.CS_N(SPIFLASH_CS_N),
.IO(SPIFLASH_IO)
);
// Memory-mapped IO in IO page, 1-hot addressing in word address.
localparam IO_LEDS_bit = 0; // W five leds
localparam IO_UART_DAT_bit = 1; // W data to send (8 bits)
localparam IO_UART_CNTL_bit = 2; // R status. bit 9: busy sending
always @(posedge clk) begin
if(isIO & mem_wstrb & mem_wordaddr[IO_LEDS_bit]) begin
LEDS <= mem_wdata[4:0];
// $display("Value sent to LEDS: %b %d %d",mem_wdata,mem_wdata,$signed(mem_wdata));
end
end
wire uart_valid = isIO & mem_wstrb & mem_wordaddr[IO_UART_DAT_bit];
wire uart_ready;
corescore_emitter_uart #(
.clk_freq_hz(`CPU_FREQ*1000000),
.baud_rate(1000000)
) UART(
.i_clk(clk),
.i_rst(!resetn),
.i_data(mem_wdata[7:0]),
.i_valid(uart_valid),
.o_ready(uart_ready),
.o_uart_tx(TXD)
);
wire [31:0] IO_rdata =
mem_wordaddr[IO_UART_CNTL_bit] ? { 22'b0, !uart_ready, 9'b0}
: 32'b0;
assign mem_rdata = isRAM ? RAM_rdata :
isSPIFlash ? SPIFlash_rdata :
IO_rdata ;
assign mem_rbusy = SPIFlash_rbusy;
`ifdef BENCH
always @(posedge clk) begin
if(uart_valid) begin
$write("%c", mem_wdata[7:0] );
$fflush(32'h8000_0001);
end
end
`endif
// Gearbox and reset circuitry.
Clockworks CW(
.CLK(CLK),
.RESET(RESET),
.clk(clk),
.resetn(resetn)
);
endmodule