-
Notifications
You must be signed in to change notification settings - Fork 252
/
Copy pathpipeline6.v
612 lines (482 loc) · 18.4 KB
/
pipeline6.v
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
/*
* pipeline6.v
* Let us see how to morph our multi-cycle CPU into a pipelined CPU !
* Step 6: register forwarding 2/2: full register forwarding
*/
`default_nettype none
`include "clockworks.v"
`include "emitter_uart.v"
//`define VERBOSE
/******************************************************************************/
module Processor (
input clk,
input resetn,
output [31:0] IO_mem_addr, // IO memory address
input [31:0] IO_mem_rdata, // data read from IO memory
output [31:0] IO_mem_wdata, // data written to IO memory
output IO_mem_wr // IO write flag
);
`include "riscv_disassembly.v"
/******************************************************************************/
/*
Reminder for the 10 RISC-V codeops
----------------------------------
ALUreg // rd <- rs1 OP rs2
ALUimm // rd <- rs1 OP Iimm
Branch // if(rs1 OP rs2) PC<-PC+Bimm
JALR // rd <- PC+4; PC<-rs1+Iimm
JAL // rd <- PC+4; PC<-PC+Jimm
AUIPC // rd <- PC + Uimm
LUI // rd <- Uimm
Load // rd <- mem[rs1+Iimm]
Store // mem[rs1+Simm] <- rs2
SYSTEM // special
*/
/******************************************************************************/
/* Instruction decoder as functions (we will use them several times) */
/* The 10 "recognizers" for the 10 codeops */
function isALUreg; input [31:0] I; isALUreg=(I[6:0]==7'b0110011); endfunction
function isALUimm; input [31:0] I; isALUimm=(I[6:0]==7'b0010011); endfunction
function isBranch; input [31:0] I; isBranch=(I[6:0]==7'b1100011); endfunction
function isJALR; input [31:0] I; isJALR =(I[6:0]==7'b1100111); endfunction
function isJAL; input [31:0] I; isJAL =(I[6:0]==7'b1101111); endfunction
function isAUIPC; input [31:0] I; isAUIPC =(I[6:0]==7'b0010111); endfunction
function isLUI; input [31:0] I; isLUI =(I[6:0]==7'b0110111); endfunction
function isLoad; input [31:0] I; isLoad =(I[6:0]==7'b0000011); endfunction
function isStore; input [31:0] I; isStore =(I[6:0]==7'b0100011); endfunction
function isSYSTEM; input [31:0] I; isSYSTEM=(I[6:0]==7'b1110011); endfunction
/* Register indices */
function [4:0] rs1Id; input [31:0] I; rs1Id = I[19:15]; endfunction
function [4:0] rs2Id; input [31:0] I; rs2Id = I[24:20]; endfunction
function [4:0] shamt; input [31:0] I; shamt = I[24:20]; endfunction
function [4:0] rdId; input [31:0] I; rdId = I[11:7]; endfunction
function [1:0] csrId; input [31:0] I; csrId = {I[27],I[21]}; endfunction
/* funct3 and funct7 */
function [2:0] funct3; input [31:0] I; funct3 = I[14:12]; endfunction
function [6:0] funct7; input [31:0] I; funct7 = I[31:25]; endfunction
/* EBREAK and CSRRS instruction "recognizers" */
function isEBREAK;
input [31:0] I;
isEBREAK = (isSYSTEM(I) && funct3(I) == 3'b000);
endfunction
function isCSRRS;
input [31:0] I;
isCSRRS = (isSYSTEM(I) && funct3(I) == 3'b010);
endfunction
/* The 5 immediate formats */
function [31:0] Uimm;
input [31:0] I;
Uimm={I[31:12],{12{1'b0}}};
endfunction
function [31:0] Iimm;
input [31:0] I;
Iimm={{21{I[31]}},I[30:20]};
endfunction
function [31:0] Simm;
input [31:0] I;
Simm={{21{I[31]}},I[30:25],I[11:7]};
endfunction
function [31:0] Bimm;
input [31:0] I;
Bimm = {{20{I[31]}},I[7],I[30:25],I[11:8],1'b0};
endfunction
function [31:0] Jimm;
input [31:0] I;
Jimm = {{12{I[31]}},I[19:12],I[20],I[30:21],1'b0};
endfunction
function writesRd;
input [31:0] I;
writesRd = !isStore(I) && !isBranch(I);
endfunction
function readsRs1;
input [31:0] I;
readsRs1 = !(isJAL(I) || isAUIPC(I) || isLUI(I));
endfunction
function readsRs2;
input [31:0] I;
readsRs2 = isALUreg(I) || isBranch(I) || isStore(I);
endfunction
/******************************************************************************/
reg [63:0] cycle;
reg [63:0] instret;
always @(posedge clk) begin
cycle <= !resetn ? 0 : cycle + 1;
end
wire D_flush;
wire E_flush;
wire F_stall;
wire D_stall;
wire halt; // Halt execution (on ebreak)
/******************************************************************************/
localparam NOP = 32'b0000000_00000_00000_000_00000_0110011;
/*** F: Instruction fetch ***/
reg [31:0] F_PC;
/** These two signals come from the Execute stage **/
wire [31:0] jumpOrBranchAddress;
wire jumpOrBranch;
reg [31:0] PROGROM[0:16383]; // 16384 4-bytes words
// 64 Kb of program ROM
initial begin
$readmemh("PROGROM.hex",PROGROM);
end
always @(posedge clk) begin
if(!F_stall) begin
FD_instr <= PROGROM[F_PC[15:2]];
FD_PC <= F_PC;
F_PC <= F_PC+4;
end
if(jumpOrBranch) begin
F_PC <= jumpOrBranchAddress;
end
// Cannot write NOP to FD_instr, because
// whenever a BRAM read is involved, do
// nothing else than sending the result
// to a reg.
FD_nop <= D_flush | !resetn;
if(!resetn) begin
F_PC <= 0;
end
end
/******************************************************************************/
reg [31:0] FD_PC;
reg [31:0] FD_instr;
reg FD_nop;
/******************************************************************************/
/*** D: Instruction decode ***/
/** These three signals come from the Writeback stage **/
wire wbEnable;
wire [31:0] wbData;
wire [4:0] wbRdId;
reg [31:0] RegisterBank [0:31];
always @(posedge clk) begin
if(!D_stall) begin
DE_PC <= FD_PC;
DE_instr <= (E_flush | FD_nop) ? NOP : FD_instr;
end
if(E_flush) begin
DE_instr <= NOP;
end
if(wbEnable) begin
RegisterBank[wbRdId] <= wbData;
end
end
/******************************************************************************/
reg [31:0] DE_PC;
reg [31:0] DE_instr;
wire [31:0] DE_rs1 = RegisterBank[rs1Id(DE_instr)];
wire [31:0] DE_rs2 = RegisterBank[rs2Id(DE_instr)];
/******************************************************************************/
/*** E: Execute ***/
/*********** Registrer forwarding ************************************/
wire E_M_fwd_rs1 = rdId(EM_instr) != 0 && writesRd(EM_instr) &&
(rdId(EM_instr) == rs1Id(DE_instr));
wire E_W_fwd_rs1 = rdId(MW_instr) != 0 && writesRd(MW_instr) &&
(rdId(MW_instr) == rs1Id(DE_instr));
wire E_M_fwd_rs2 = rdId(EM_instr) != 0 && writesRd(EM_instr) &&
(rdId(EM_instr) == rs2Id(DE_instr));
wire E_W_fwd_rs2 = rdId(MW_instr) != 0 && writesRd(MW_instr) &&
(rdId(MW_instr) == rs2Id(DE_instr));
wire [31:0] E_rs1 = E_M_fwd_rs1 ? EM_Eresult :
E_W_fwd_rs1 ? wbData :
DE_rs1;
wire [31:0] E_rs2 = E_M_fwd_rs2 ? EM_Eresult :
E_W_fwd_rs2 ? wbData :
DE_rs2;
/*********** the ALU *************************************************/
wire [31:0] E_aluIn1 = E_rs1;
wire [31:0] E_aluIn2 =
(isALUreg(DE_instr) | isBranch(DE_instr)) ? E_rs2 : Iimm(DE_instr);
wire [4:0] E_shamt = isALUreg(DE_instr) ? E_rs2[4:0] : shamt(DE_instr);
wire E_minus = DE_instr[30] & isALUreg(DE_instr);
wire E_arith_shift = DE_instr[30];
// The adder is used by both arithmetic instructions and JALR.
wire [31:0] E_aluPlus = E_aluIn1 + E_aluIn2;
// Use a single 33 bits subtract to do subtraction and all comparisons
// (trick borrowed from swapforth/J1)
wire [32:0] E_aluMinus = {1'b1, ~E_aluIn2} + {1'b0,E_aluIn1} + 33'b1;
wire E_LT =
(E_aluIn1[31] ^ E_aluIn2[31]) ? E_aluIn1[31] : E_aluMinus[32];
wire E_LTU = E_aluMinus[32];
wire E_EQ = (E_aluMinus[31:0] == 0);
// Flip a 32 bit word. Used by the shifter (a single shifter for
// left and right shifts, saves silicium !)
function [31:0] flip32;
input [31:0] x;
flip32 = {x[ 0], x[ 1], x[ 2], x[ 3], x[ 4], x[ 5], x[ 6], x[ 7],
x[ 8], x[ 9], x[10], x[11], x[12], x[13], x[14], x[15],
x[16], x[17], x[18], x[19], x[20], x[21], x[22], x[23],
x[24], x[25], x[26], x[27], x[28], x[29], x[30], x[31]};
endfunction
wire [31:0] E_shifter_in =
(funct3(DE_instr)==3'b001) ? flip32(E_aluIn1) : E_aluIn1;
/* verilator lint_off WIDTH */
wire [31:0] E_shifter =
$signed({E_arith_shift & E_aluIn1[31], E_shifter_in}) >>> E_aluIn2[4:0];
/* verilator lint_on WIDTH */
wire [31:0] E_leftshift = flip32(E_shifter);
reg [31:0] E_aluOut;
always @(*) begin
case(funct3(DE_instr))
3'b000: E_aluOut = E_minus ? E_aluMinus[31:0] : E_aluPlus;
3'b001: E_aluOut = E_leftshift;
3'b010: E_aluOut = {31'b0, E_LT};
3'b011: E_aluOut = {31'b0, E_LTU};
3'b100: E_aluOut = E_aluIn1 ^ E_aluIn2;
3'b101: E_aluOut = E_shifter;
3'b110: E_aluOut = E_aluIn1 | E_aluIn2;
3'b111: E_aluOut = E_aluIn1 & E_aluIn2;
endcase
end
/*********** Branch, JAL, JALR ***********************************/
reg E_takeBranch;
always @(*) begin
case (funct3(DE_instr))
3'b000: E_takeBranch = E_EQ;
3'b001: E_takeBranch = !E_EQ;
3'b100: E_takeBranch = E_LT;
3'b101: E_takeBranch = !E_LT;
3'b110: E_takeBranch = E_LTU;
3'b111: E_takeBranch = !E_LTU;
default: E_takeBranch = 1'b0;
endcase
end
wire E_JumpOrBranch = (
isJAL(DE_instr) ||
isJALR(DE_instr) ||
(isBranch(DE_instr) && E_takeBranch)
);
wire [31:0] E_JumpOrBranchAddr =
isBranch(DE_instr) ? DE_PC + Bimm(DE_instr) :
isJAL(DE_instr) ? DE_PC + Jimm(DE_instr) :
/* JALR */ {E_aluPlus[31:1],1'b0} ;
wire [31:0] E_result =
(isJAL(DE_instr) | isJALR(DE_instr)) ? DE_PC+4 :
isLUI(DE_instr) ? Uimm(DE_instr) :
isAUIPC(DE_instr) ? DE_PC + Uimm(DE_instr) :
E_aluOut ;
/**************************************************************/
always @(posedge clk) begin
EM_PC <= DE_PC;
EM_instr <= DE_instr;
EM_rs2 <= E_rs2;
EM_Eresult <= E_result;
EM_addr <= isStore(DE_instr) ? E_rs1 + Simm(DE_instr) :
E_rs1 + Iimm(DE_instr) ;
end
assign halt = resetn & isEBREAK(DE_instr);
/******************************************************************************/
reg [31:0] EM_PC;
reg [31:0] EM_instr;
reg [31:0] EM_rs2;
reg [31:0] EM_Eresult;
reg [31:0] EM_addr;
/******************************************************************************/
/*** M: Memory ***/
wire [2:0] M_funct3 = funct3(EM_instr);
wire M_isB = (M_funct3[1:0] == 2'b00);
wire M_isH = (M_funct3[1:0] == 2'b01);
/*************** STORE **************************/
wire [31:0] M_STORE_data;
assign M_STORE_data[ 7: 0] = EM_rs2[7:0];
assign M_STORE_data[15: 8] = EM_addr[0] ? EM_rs2[7:0] : EM_rs2[15: 8] ;
assign M_STORE_data[23:16] = EM_addr[1] ? EM_rs2[7:0] : EM_rs2[23:16] ;
assign M_STORE_data[31:24] = EM_addr[0] ? EM_rs2[7:0] :
EM_addr[1] ? EM_rs2[15:8] : EM_rs2[31:24] ;
// The memory write mask:
// 1111 if writing a word
// 0011 or 1100 if writing a halfword
// (depending on EM_addr[1])
// 0001, 0010, 0100 or 1000 if writing a byte
// (depending on EM_addr[1:0])
wire [3:0] M_STORE_wmask = M_isB ?
(EM_addr[1] ?
(EM_addr[0] ? 4'b1000 : 4'b0100) :
(EM_addr[0] ? 4'b0010 : 4'b0001)
) :
M_isH ? (EM_addr[1] ? 4'b1100 : 4'b0011) :
4'b1111 ;
wire M_isIO = EM_addr[22];
wire M_isRAM = !M_isIO;
assign IO_mem_addr = EM_addr;
assign IO_mem_wr = isStore(EM_instr) && M_isIO; // && M_STORE_wmask[0];
assign IO_mem_wdata = EM_rs2;
wire [3:0] M_wmask = {4{isStore(EM_instr) & M_isRAM}} & M_STORE_wmask;
reg [31:0] DATARAM [0:16383]; // 16384 4-bytes words
// 64 Kb of data RAM in total
wire [13:0] M_word_addr = EM_addr[15:2];
always @(posedge clk) begin
MW_Mdata <= DATARAM[M_word_addr];
if(M_wmask[0]) DATARAM[M_word_addr][ 7:0 ] <= M_STORE_data[ 7:0 ];
if(M_wmask[1]) DATARAM[M_word_addr][15:8 ] <= M_STORE_data[15:8 ];
if(M_wmask[2]) DATARAM[M_word_addr][23:16] <= M_STORE_data[23:16];
if(M_wmask[3]) DATARAM[M_word_addr][31:24] <= M_STORE_data[31:24];
end
initial begin
$readmemh("DATARAM.hex",DATARAM);
end
always @(posedge clk) begin
MW_PC <= EM_PC;
MW_instr <= EM_instr;
MW_Eresult <= EM_Eresult;
MW_IOresult <= IO_mem_rdata;
MW_addr <= EM_addr;
case(csrId(EM_instr))
2'b00: MW_CSRresult = cycle[31:0];
2'b10: MW_CSRresult = cycle[63:32];
2'b01: MW_CSRresult = instret[31:0];
2'b11: MW_CSRresult = instret[63:32];
endcase
if(!resetn) begin
instret <= 0;
end else if(MW_instr != NOP) begin
instret <= instret + 1;
end
end
/******************************************************************************/
reg [31:0] MW_PC;
reg [31:0] MW_instr;
reg [31:0] MW_Eresult;
reg [31:0] MW_addr;
reg [31:0] MW_Mdata;
reg [31:0] MW_IOresult;
reg [31:0] MW_CSRresult;
/******************************************************************************/
/*** W: WriteBack ***/
wire [2:0] W_funct3 = funct3(MW_instr);
wire W_isB = (W_funct3[1:0] == 2'b00);
wire W_isH = (W_funct3[1:0] == 2'b01);
wire W_sext = !W_funct3[2];
wire W_isIO = MW_addr[22];
/*************** LOAD ****************************/
wire [15:0] W_LOAD_H=MW_addr[1] ? MW_Mdata[31:16]: MW_Mdata[15:0];
wire [7:0] W_LOAD_B=MW_addr[0] ? W_LOAD_H[15:8] : W_LOAD_H[7:0];
wire W_LOAD_sign=W_sext & (W_isB ? W_LOAD_B[7] : W_LOAD_H[15]);
wire [31:0] W_Mresult = W_isB ? {{24{W_LOAD_sign}},W_LOAD_B} :
W_isH ? {{16{W_LOAD_sign}},W_LOAD_H} :
MW_Mdata ;
assign wbData =
isLoad(MW_instr) ? (W_isIO ? MW_IOresult : W_Mresult) :
isCSRRS(MW_instr) ? MW_CSRresult :
MW_Eresult;
assign wbEnable = writesRd(MW_instr) && rdId(MW_instr) != 0;
assign wbRdId = rdId(MW_instr);
/******************************************************************************/
assign jumpOrBranchAddress = E_JumpOrBranchAddr;
assign jumpOrBranch = E_JumpOrBranch;
// Not testing that rdId(DE_instr) != 0 because in general one
// does not Load to zero ! (idem for CSRRS).
wire rs1Hazard = readsRs1(FD_instr) && (rs1Id(FD_instr) == rdId(DE_instr)) ;
wire rs2Hazard = readsRs2(FD_instr) && (rs2Id(FD_instr) == rdId(DE_instr)) ;
wire dataHazard = !FD_nop &&
(isLoad(DE_instr)||isCSRRS(DE_instr)) &&
(rs1Hazard || rs2Hazard);
assign F_stall = dataHazard | halt;
assign D_stall = dataHazard | halt;
assign D_flush = E_JumpOrBranch;
assign E_flush = E_JumpOrBranch | dataHazard;
/******************************************************************************/
`ifdef BENCH
always @(posedge clk) begin
if(halt) $finish();
end
`endif
`ifdef VERBOSE
always @(posedge clk) begin
if(resetn) begin
$write("D_flush=%d E_flush=%d F_stall=%d D_stall=%d\n", D_flush, E_flush, F_stall, D_stall);
$write("[W] PC=%h ", MW_PC);
$write(" ");
riscv_disasm(MW_instr,MW_PC);
if(wbEnable) $write(" x%0d <- 0x%0h",rdId(MW_instr),wbData);
$write("\n");
$write("[M] PC=%h ", EM_PC);
$write(" ");
riscv_disasm(EM_instr,EM_PC);
$write("\n");
$write("[E] PC=%h ", DE_PC);
$write(" ");
riscv_disasm(DE_instr,DE_PC);
if(DE_instr != NOP) begin
$write(" rs1=0x%h rs2=0x%h ",DE_rs1, DE_rs2);
end
$write("\n");
$write("[D] PC=%h ", FD_PC);
$write("[%s%s] ",dataHazard && rs1Hazard?"*":" ", dataHazard && rs2Hazard?"*":" ");
riscv_disasm(FD_nop ? NOP: FD_instr,FD_PC);
$write("\n");
$write("[F] PC=%h ", F_PC);
if(jumpOrBranch) $write(" PC <- 0x%0h",jumpOrBranchAddress);
$write("\n");
$display("");
end
end
`endif
/******************************************************************************/
endmodule
module SOC (
input CLK, // system clock
input RESET,// reset button
output reg [4:0] LEDS, // system LEDs
input RXD, // UART receive
output TXD // UART transmit
);
wire clk;
wire resetn;
wire [31:0] IO_mem_addr;
wire [31:0] IO_mem_rdata;
wire [31:0] IO_mem_wdata;
wire IO_mem_wr;
Processor CPU(
.clk(clk),
.resetn(resetn),
.IO_mem_addr(IO_mem_addr),
.IO_mem_rdata(IO_mem_rdata),
.IO_mem_wdata(IO_mem_wdata),
.IO_mem_wr(IO_mem_wr)
);
wire [13:0] IO_wordaddr = IO_mem_addr[15:2];
// Memory-mapped IO in IO page, 1-hot addressing in word address.
localparam IO_LEDS_bit = 0; // W five leds
localparam IO_UART_DAT_bit = 1; // W data to send (8 bits)
localparam IO_UART_CNTL_bit = 2; // R status. bit 9: busy sending
always @(posedge clk) begin
if(IO_mem_wr & IO_wordaddr[IO_LEDS_bit]) begin
LEDS <= IO_mem_wdata[4:0];
end
end
wire uart_valid = IO_mem_wr & IO_wordaddr[IO_UART_DAT_bit];
wire uart_ready;
corescore_emitter_uart #(
.clk_freq_hz(`CPU_FREQ*1000000),
.baud_rate(1000000)
) UART(
.i_clk(clk),
.i_rst(!resetn),
.i_data(IO_mem_wdata[7:0]),
.i_valid(uart_valid),
.o_ready(uart_ready),
.o_uart_tx(TXD)
);
assign IO_mem_rdata =
IO_wordaddr[IO_UART_CNTL_bit] ? { 22'b0, !uart_ready, 9'b0}
: 32'b0;
`ifdef BENCH
always @(posedge clk) begin
if(uart_valid) begin
`ifdef VERBOSE
$display("UART: %c", IO_mem_wdata[7:0]);
`else
$write("%c", IO_mem_wdata[7:0] );
$fflush(32'h8000_0001);
`endif
end
end
`endif
// Gearbox and reset circuitry.
Clockworks CW(
.CLK(CLK),
.RESET(RESET),
.clk(clk),
.resetn(resetn)
);
endmodule