-
Notifications
You must be signed in to change notification settings - Fork 252
/
Copy pathraystones.c
518 lines (451 loc) · 14.8 KB
/
raystones.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
/* A port of Dmitry Sokolov's tiny raytracer to C and to FemtoRV32 */
/* Displays on the small OLED display and/or HDMI */
/* Bruno Levy, 2020 */
/* Original tinyraytracer: https://github.com/ssloy/tinyraytracer */
#include <stdint.h>
#include <math.h>
#include <stdlib.h>
#include "perf.h"
#include "io.h"
/*******************************************************************/
typedef int BOOL;
static inline float max(float x, float y) { return x>y?x:y; }
static inline float min(float x, float y) { return x<y?x:y; }
/*******************************************************************/
// If you want to adapt tinyraytracer to your own platform, there are
// mostly two macros and two functions to write:
// graphics_width
// graphics_height
// graphics_init()
// graphics_set_pixel()
//
// You can also write the following functions (or leave them empty if
// you do not need them):
// graphics_terminate()
// stats_begin_frame()
// stats_begin_pixel()
// stats_end_pixel()
// stats_end_frame()
// Size of the screen
// Replace with your own variables or values
// Benchmark
// - graphics deactivated (else UART waiting loop gives
// different results according to CPU freq / UART baud rate
// ratio).
// - smaller image size (for faster run in simulation)
static int graphics_width = 120;
static int graphics_height = 60;
static int bench_run=0;
// Two pixels per character using UTF8 character set
// (comment-out if terminal does not support it)
#define graphics_double_lines
// Replace with your own stuff to initialize graphics
static inline void graphics_init() {
printf("\033[48;5;16m" // set background color black
"\033[38;5;15m" // set foreground color white
"\033[H" // home
"\033[2J"); // clear screen
}
// Replace with your own stuff to terminate graphics or leave empty
// Here I send <ctrl><D> to the UART, to exit the simulation in Verilator,
// it is captured by special code in RTL/DEVICES/uart.v
static inline void graphics_terminate() {
printf("\033[48;5;16m" // set background color black
"\033[38;5;15m" // set foreground color white
);
}
// Replace with your own code.
void graphics_set_pixel(int x, int y, float r, float g, float b) {
r = max(0.0f, min(1.0f, r));
g = max(0.0f, min(1.0f, g));
b = max(0.0f, min(1.0f, b));
uint8_t R = (uint8_t)(255.0f * r);
uint8_t G = (uint8_t)(255.0f * g);
uint8_t B = (uint8_t)(255.0f * b);
// graphics output deactivated for bench run
if(bench_run) {
if(y & 1) {
if(x == graphics_width-1) {
printf("%d",y/2);
}
}
return;
}
#ifdef graphics_double_lines
static uint8_t prev_R=0;
static uint8_t prev_G=0;
static uint8_t prev_B=0;
if(y&1) {
if((R == prev_R) && (G == prev_G) && (B == prev_B)) {
printf("\033[48;2;%d;%d;%dm ",(int)R,(int)G,(int)B);
} else {
printf("\033[48;2;%d;%d;%dm",(int)prev_R,(int)prev_G,(int)prev_B);
printf("\033[38;2;%d;%d;%dm",(int)R,(int)G,(int)B);
// https://www.w3.org/TR/xml-entity-names/025.html
// https://onlineunicodetools.com/convert-unicode-to-utf8
printf("\xE2\x96\x83");
}
if(x == graphics_width-1) {
printf("\033[38;2;0;0;0m");
printf("\033[48;2;0;0;0m\n");
}
} else {
prev_R = R;
prev_G = G;
prev_B = B;
}
#else
printf("\033[48;2;%d;%d;%dm ",(int)R,(int)G,(int)B);
if(x == graphics_width-1) {
printf("\033[48;2;0;0;0m\n");
}
#endif
}
// Begins statistics collection for current pixel
// Leave emtpy if not needed.
// There are these two levels because on some
// femtorv32 cores (quark, tachyon), the clock tick counter does not
// have sufficient bits and will wrap during the time taken by
// rendering a frame (up to several minutes).
static inline stats_begin_pixel() {
}
// Ends statistics collection for current pixel
// Leave emtpy if not needed.
static inline stats_end_pixel() {
}
// Print "fixed point" number (integer/1000)
static void printk(uint64_t kx) {
int intpart = (int)(kx / 1000);
int fracpart = (int)(kx % 1000);
printf("%d.",intpart);
if(fracpart<100) {
printf("0");
}
if(fracpart<10) {
printf("0");
}
printf("%d",fracpart);
}
static uint64_t instret_start;
static uint64_t cycles_start;
// Begins statistics collection for current frame.
// Leave emtpy if not needed.
static inline stats_begin_frame() {
instret_start = rdinstret();
cycles_start = rdcycle();
}
// Ends statistics collection for current frame
// and displays result.
// Leave emtpy if not needed.
static inline stats_end_frame() {
graphics_terminate();
uint64_t instret = rdinstret() - instret_start;
uint64_t cycles = rdcycle() - cycles_start ;
uint64_t kCPI = cycles*1000/instret;
uint64_t pixels = graphics_width * graphics_height;
uint64_t kRAYSTONES = (pixels*1000000000)/cycles;
printf(
"\n%dx%d %s ",
graphics_width,graphics_height,
bench_run ?
"no gfx output (measurement is accurate)" :
"gfx output (measurement is NOT accurate)"
);
printf("CPI="); printk(kCPI); printf(" ");
printf("RAYSTONES="); printk(kRAYSTONES);
printf("\n");
}
// Normally you will not need to modify anything beyond that point.
/*******************************************************************/
typedef struct { float x,y,z; } vec3;
typedef struct { float x,y,z,w; } vec4;
static inline vec3 make_vec3(float x, float y, float z) {
vec3 V;
V.x = x; V.y = y; V.z = z;
return V;
}
static inline vec4 make_vec4(float x, float y, float z, float w) {
vec4 V;
V.x = x; V.y = y; V.z = z; V.w = w;
return V;
}
static inline vec3 vec3_neg(vec3 V) {
return make_vec3(-V.x, -V.y, -V.z);
}
static inline vec3 vec3_add(vec3 U, vec3 V) {
return make_vec3(U.x+V.x, U.y+V.y, U.z+V.z);
}
static inline vec3 vec3_sub(vec3 U, vec3 V) {
return make_vec3(U.x-V.x, U.y-V.y, U.z-V.z);
}
static inline float vec3_dot(vec3 U, vec3 V) {
return U.x*V.x+U.y*V.y+U.z*V.z;
}
static inline vec3 vec3_scale(float s, vec3 U) {
return make_vec3(s*U.x, s*U.y, s*U.z);
}
static inline float vec3_length(vec3 U) {
return sqrtf(U.x*U.x+U.y*U.y+U.z*U.z);
}
static inline vec3 vec3_normalize(vec3 U) {
return vec3_scale(1.0f/vec3_length(U),U);
}
/*************************************************************************/
typedef struct Light {
vec3 position;
float intensity;
} Light;
Light make_Light(vec3 position, float intensity) {
Light L;
L.position = position;
L.intensity = intensity;
return L;
}
/*************************************************************************/
typedef struct {
float refractive_index;
vec4 albedo;
vec3 diffuse_color;
float specular_exponent;
} Material;
Material make_Material(float r, vec4 a, vec3 color, float spec) {
Material M;
M.refractive_index = r;
M.albedo = a;
M.diffuse_color = color;
M.specular_exponent = spec;
return M;
}
Material make_Material_default() {
Material M;
M.refractive_index = 1;
M.albedo = make_vec4(1,0,0,0);
M.diffuse_color = make_vec3(0,0,0);
M.specular_exponent = 0;
return M;
}
/*************************************************************************/
typedef struct {
vec3 center;
float radius;
Material material;
} Sphere;
Sphere make_Sphere(vec3 c, float r, Material M) {
Sphere S;
S.center = c;
S.radius = r;
S.material = M;
return S;
}
BOOL Sphere_ray_intersect(Sphere* S, vec3 orig, vec3 dir, float* t0) {
vec3 L = vec3_sub(S->center, orig);
float tca = vec3_dot(L,dir);
float d2 = vec3_dot(L,L) - tca*tca;
float r2 = S->radius*S->radius;
if (d2 > r2) return 0;
float thc = sqrtf(r2 - d2);
*t0 = tca - thc;
float t1 = tca + thc;
if (*t0 < 0) *t0 = t1;
if (*t0 < 0) return 0;
return 1;
}
vec3 reflect(vec3 I, vec3 N) {
return vec3_sub(I, vec3_scale(2.f*vec3_dot(I,N),N));
}
vec3 refract(vec3 I, vec3 N, float eta_t, float eta_i /* =1.f */) {
// Snell's law
float cosi = -max(-1.f, min(1.f, vec3_dot(I,N)));
// if the ray comes from the inside the object, swap the air and the media
if (cosi<0) return refract(I, vec3_neg(N), eta_i, eta_t);
float eta = eta_i / eta_t;
float k = 1 - eta*eta*(1 - cosi*cosi);
// k<0 = total reflection, no ray to refract.
// I refract it anyways, this has no physical meaning
return k<0 ? make_vec3(1,0,0)
: vec3_add(vec3_scale(eta,I),vec3_scale((eta*cosi - sqrtf(k)),N));
}
BOOL scene_intersect(
vec3 orig, vec3 dir, Sphere* spheres, int nb_spheres,
vec3* hit, vec3* N, Material* material
) {
float spheres_dist = 1e30;
for(int i=0; i<nb_spheres; ++i) {
float dist_i;
if(
Sphere_ray_intersect(&spheres[i], orig, dir, &dist_i) &&
(dist_i < spheres_dist)
) {
spheres_dist = dist_i;
*hit = vec3_add(orig,vec3_scale(dist_i,dir));
*N = vec3_normalize(vec3_sub(*hit, spheres[i].center));
*material = spheres[i].material;
}
}
float checkerboard_dist = 1e30;
if (fabs(dir.y)>1e-3) {
float d = -(orig.y+4)/dir.y; // the checkerboard plane has equation y = -4
vec3 pt = vec3_add(orig, vec3_scale(d,dir));
if (d>0 && fabs(pt.x)<10 && pt.z<-10 && pt.z>-30 && d<spheres_dist) {
checkerboard_dist = d;
*hit = pt;
*N = make_vec3(0,1,0);
material->diffuse_color =
(((int)(.5*hit->x+1000) + (int)(.5*hit->z)) & 1)
? make_vec3(.3, .3, .3)
: make_vec3(.3, .2, .1);
}
}
return min(spheres_dist, checkerboard_dist)<1000;
}
vec3 cast_ray(
vec3 orig, vec3 dir, Sphere* spheres, int nb_spheres,
Light* lights, int nb_lights, int depth /* =0 */
) {
vec3 point,N;
Material material = make_Material_default();
if (
depth>2 ||
!scene_intersect(orig, dir, spheres, nb_spheres, &point, &N, &material)
) {
float s = 0.5*(dir.y + 1.0);
return vec3_add(
vec3_scale(s,make_vec3(0.2, 0.7, 0.8)),
vec3_scale(s,make_vec3(0.0, 0.0, 0.5))
);
}
vec3 reflect_dir=vec3_normalize(reflect(dir, N));
vec3 refract_dir=vec3_normalize(refract(dir,N,material.refractive_index,1));
// offset the original point to avoid occlusion by the object itself
vec3 reflect_orig =
vec3_dot(reflect_dir,N) < 0
? vec3_sub(point,vec3_scale(1e-3,N))
: vec3_add(point,vec3_scale(1e-3,N));
vec3 refract_orig =
vec3_dot(refract_dir,N) < 0
? vec3_sub(point,vec3_scale(1e-3,N))
: vec3_add(point,vec3_scale(1e-3,N));
vec3 reflect_color = cast_ray(
reflect_orig, reflect_dir, spheres, nb_spheres,
lights, nb_lights, depth + 1
);
vec3 refract_color = cast_ray(
refract_orig, refract_dir, spheres, nb_spheres,
lights, nb_lights, depth + 1
);
float diffuse_light_intensity = 0, specular_light_intensity = 0;
for (int i=0; i<nb_lights; i++) {
vec3 light_dir = vec3_normalize(vec3_sub(lights[i].position,point));
float light_distance = vec3_length(vec3_sub(lights[i].position,point));
vec3 shadow_orig =
vec3_dot(light_dir,N) < 0
? vec3_sub(point,vec3_scale(1e-3,N))
: vec3_add(point,vec3_scale(1e-3,N)) ;
// checking if the point lies in the shadow of the lights[i]
vec3 shadow_pt, shadow_N;
Material tmpmaterial;
if (
scene_intersect(
shadow_orig, light_dir, spheres, nb_spheres,
&shadow_pt, &shadow_N, &tmpmaterial
) && (
vec3_length(vec3_sub(shadow_pt,shadow_orig)) < light_distance
)
) continue ;
diffuse_light_intensity +=
lights[i].intensity * max(0.f, vec3_dot(light_dir,N));
float abc = max(
0.f, vec3_dot(vec3_neg(reflect(vec3_neg(light_dir), N)),dir)
);
float def = material.specular_exponent;
if(abc > 0.0f && def > 0.0f) {
specular_light_intensity += powf(abc,def)*lights[i].intensity;
}
}
vec3 result = vec3_scale(
diffuse_light_intensity * material.albedo.x, material.diffuse_color
);
result = vec3_add(
result, vec3_scale(specular_light_intensity * material.albedo.y,
make_vec3(1,1,1))
);
result = vec3_add(result, vec3_scale(material.albedo.z, reflect_color));
result = vec3_add(result, vec3_scale(material.albedo.w, refract_color));
return result;
}
static inline void render_pixel(
int i, int j, Sphere* spheres, int nb_spheres, Light* lights, int nb_lights
) {
const float fov = M_PI/3.;
stats_begin_pixel();
float dir_x = (i + 0.5) - graphics_width/2.;
float dir_y = -(j + 0.5) + graphics_height/2.; // this flips the image.
float dir_z = -graphics_height/(2.*tan(fov/2.));
vec3 C = cast_ray(
make_vec3(0,0,0), vec3_normalize(make_vec3(dir_x, dir_y, dir_z)),
spheres, nb_spheres, lights, nb_lights, 0
);
graphics_set_pixel(i,j,C.x,C.y,C.z);
stats_end_pixel();
}
void render(Sphere* spheres, int nb_spheres, Light* lights, int nb_lights) {
stats_begin_frame();
#ifdef graphics_double_lines
for (int j = 0; j<graphics_height; j+=2) {
for (int i = 0; i<graphics_width; i++) {
render_pixel(i,j ,spheres,nb_spheres,lights,nb_lights);
render_pixel(i,j+1,spheres,nb_spheres,lights,nb_lights);
}
}
#else
for (int j = 0; j<graphics_height; j++) {
for (int i = 0; i<graphics_width; i++) {
render_pixel(i,j ,spheres,nb_spheres,lights,nb_lights);
}
}
#endif
stats_end_frame();
}
int nb_spheres = 4;
Sphere spheres[4];
int nb_lights = 3;
Light lights[3];
void init_scene() {
Material ivory = make_Material(
1.0, make_vec4(0.6, 0.3, 0.1, 0.0), make_vec3(0.4, 0.4, 0.3), 50.
);
Material glass = make_Material(
1.5, make_vec4(0.0, 0.5, 0.1, 0.8), make_vec3(0.6, 0.7, 0.8), 125.
);
Material red_rubber = make_Material(
1.0, make_vec4(0.9, 0.1, 0.0, 0.0), make_vec3(0.3, 0.1, 0.1), 10.
);
Material mirror = make_Material(
1.0, make_vec4(0.0, 10.0, 0.8, 0.0), make_vec3(1.0, 1.0, 1.0), 142.
);
spheres[0] = make_Sphere(make_vec3(-3, 0, -16), 2, ivory);
spheres[1] = make_Sphere(make_vec3(-1.0, -1.5, -12), 2, glass);
spheres[2] = make_Sphere(make_vec3( 1.5, -0.5, -18), 3, red_rubber);
spheres[3] = make_Sphere(make_vec3( 7, 5, -18), 4, mirror);
lights[0] = make_Light(make_vec3(-20, 20, 20), 1.5);
lights[1] = make_Light(make_vec3( 30, 50, -25), 1.8);
lights[2] = make_Light(make_vec3( 30, 20, 30), 1.7);
}
int main() {
init_scene();
graphics_init();
IO_OUT(IO_LEDS,5);
bench_run = 1;
graphics_width = 40;
graphics_height = 20;
printf("Running without graphic output (for accurate measurement)...\n");
render(spheres, nb_spheres, lights, nb_lights);
IO_OUT(IO_LEDS,10);
bench_run = 0;
graphics_width = 120;
graphics_height = 60;
render(spheres, nb_spheres, lights, nb_lights);
IO_OUT(IO_LEDS,15);
graphics_terminate();
return 0;
}