-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathdataset.py
207 lines (189 loc) · 9.17 KB
/
dataset.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
import random
import numpy as np
import torch
import torchvision
from torchvision import transforms
from torch.utils.data import DataLoader, TensorDataset
import sklearn
from sklearn import datasets
from sklearn.model_selection import train_test_split
import h5py
import cv2
import glob
import os
from cub_dataset import CUB
def seed_worker(worker_id):
worker_seed = torch.initial_seed() % 2**32
np.random.seed(worker_seed)
random.seed(worker_seed)
class Dataset:
""" get or create dataset object associated with filepath """
def __init__(self, name, ood=False):
# dataset
root_dir = '/users/hsit/scratch/'
self.X_CE = None
self.y_CE = None
if name == "mnist":
self.X_train, self.y_train, self.X_test, self.y_test, self.classes, self.n_classes = self.load_mnist(root_dir, ood)
if name == "fmnist":
self.X_train, self.y_train, self.X_test, self.y_test, self.classes, self.n_classes = self.load_fmnist(root_dir, ood)
if name == "moon":
self.X_train, self.y_train, self.X_test, self.y_test, self.n_classes = self.load_moon(0.1)
if name == "cifar10":
self.X_CE, self.y_CE, self.X_test, self.y_test, self.n_classes = self.load_cifar10(root_dir)
self.X_train, self.y_train = self.load_cifar10_augment(root_dir)
if name == "bird":
self.X_CE, self.y_CE, self.X_test, self.n_classes = self.load_bird(root_dir)
self.X_train, self.y_train = self.load_bird_augment(root_dir)
# dataloaders
self.train_dl = None
self.test_dl = None
self.centroid_dl = None
self.centroid_dl_iter = None
def load_moon(self, noise):
X_train, y_train = datasets.make_moons(n_samples=1500, noise=noise, random_state=0)
X_test, y_test = datasets.make_moons(n_samples=200, noise=noise, random_state=1)
return torch.tensor(X_train).float(), torch.tensor(y_train), torch.tensor(X_test).float(), torch.tensor(y_test), 2
def load_mnist(self, root_dir, ood_fmnist=False):
if ood_fmnist:
transform = transforms.Compose([transforms.ToTensor(), transforms.Normalize((0.2861,), (0.3530,))])
else:
transform = transforms.Compose([transforms.ToTensor(), transforms.Normalize((0.1307,), (0.3081,))])
train_dataset = torchvision.datasets.MNIST(root=root_dir, download=True, train=True, transform=transform)
test_dataset = torchvision.datasets.MNIST(root=root_dir, download=True, train=False, transform=transform)
X_train = torch.stack([x for x,_ in train_dataset], 0)
X_test = torch.stack([x for x,_ in test_dataset], 0)
return X_train, train_dataset.targets, X_test, test_dataset.targets, train_dataset.classes, len(train_dataset.classes)
def load_fmnist(self, root_dir, ood_mnist=False):
if ood_mnist:
transform = transforms.Compose([transforms.ToTensor(), transforms.Normalize((0.1307,), (0.3081,))])
else:
transform = transforms.Compose([transforms.ToTensor(), transforms.Normalize((0.2861,), (0.3530,))])
train_dataset = torchvision.datasets.FashionMNIST(root=root_dir, download=True, train=True, transform=transform)
test_dataset = torchvision.datasets.FashionMNIST(root=root_dir, download=True, train=False, transform=transform)
X_train = torch.stack([x for x,_ in train_dataset], 0)
X_test = torch.stack([x for x,_ in test_dataset], 0)
return X_train, train_dataset.targets, X_test, test_dataset.targets, train_dataset.classes, len(train_dataset.classes)
def load_cifar10(self, root_dir):
transform = transforms.Compose([transforms.ToTensor(), transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010))])
train_dataset = torchvision.datasets.CIFAR10(root=root_dir, download=True, train=True, transform=transform)
test_dataset = torchvision.datasets.CIFAR10(root=root_dir, download=True, train=False, transform=transform)
X_train = torch.stack([x for x,_ in train_dataset], 0)
return X_train, train_dataset.targets, test_dataset, test_dataset.targets, len(train_dataset.classes)
def load_cifar10_augment(self, root_dir):
transform = transforms.Compose([
transforms.RandomCrop(32, padding=4),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010)),
])
train_dataset = torchvision.datasets.CIFAR10(root=root_dir, download=True, train=True, transform=transform)
return train_dataset, train_dataset.targets
def load_bird(self, root_dir):
transform = transforms.Compose([
transforms.Resize(224),
transforms.CenterCrop(224),
transforms.ToTensor(),
transforms.Normalize(mean=[0.485, 0.456, 0.406],
std=[0.229, 0.224, 0.225])
])
train_dataset = CUB(f'{root_dir}cub2002011/CUB_200_2011/', 'train', transform=transform)
X_train = []
y_train = []
for x, y in train_dataset:
y_train.append(y)
X_train.append(x)
y_train = torch.tensor(y_train)
X_train = torch.stack(X_train, 0)
test_dataset = CUB(f'{root_dir}cub2002011/CUB_200_2011/', 'test', transform=transform)
return X_train, y_train, test_dataset, 200
def load_bird_augment(self, root_dir):
transform = transforms.Compose([
transforms.RandomHorizontalFlip(p=0.5),
transforms.RandomRotation(30),
transforms.Resize(224),
transforms.CenterCrop(224),
transforms.ToTensor(),
transforms.Normalize(mean=[0.485, 0.456, 0.406],
std=[0.229, 0.224, 0.225])
])
train_dataset = CUB(f'{root_dir}cub2002011/CUB_200_2011/', 'train', transform=transform)
y_train = []
for x, y in train_dataset:
y_train.append(y)
y_train = torch.tensor(y_train)
return train_dataset, y_train
def set_train_dataloader(self, batch_size, seed=0, drop_last=True):
torch.random.manual_seed(seed)
random.seed(seed)
g = torch.Generator()
g.manual_seed(seed)
try:
set = TensorDataset(self.X_train, self.y_train)
except:
set = self.X_train
self.train_dl = DataLoader(set, batch_size=batch_size, shuffle=True, num_workers=1, worker_init_fn=seed_worker, generator=g, drop_last=drop_last)
def set_test_dataloader(self, batch_size, shuffle=False):
try:
set = TensorDataset(self.X_test, self.y_test)
except:
set = self.X_test
self.test_dl = DataLoader(set, batch_size=batch_size, shuffle=shuffle)
def get_prototype_dataloader(self, batch_size, n_samples, shuffle=False):
A = self.X_test
y = self.y_test
_, c, iw, ih = A.shape
A = torch.tile(A.unsqueeze(1), (1, n_samples, 1, 1, 1)).reshape(-1, c, iw, ih)
y = torch.tile(y.unsqueeze(1), (1, n_samples)).reshape(-1)
set = TensorDataset(A, y)
return DataLoader(set, batch_size=batch_size, shuffle=shuffle)
def set_centroid_dataloader(self, batch_size, seed=0, drop_last=True):
torch.random.manual_seed(seed)
random.seed(seed)
g = torch.Generator()
g.manual_seed(seed)
if self.X_CE is None:
try:
set = TensorDataset(self.X_train, self.y_train)
except:
set = self.X_train
else:
try:
set = TensorDataset(self.X_CE, self.y_CE)
except:
set = self.X_CE
self.centroid_dl = DataLoader(set, batch_size=batch_size, shuffle=True, num_workers=1, worker_init_fn=seed_worker, generator=g, drop_last=drop_last)
def reset_centroid_dataloader_iter(self):
if self.X_CE is not None:
self.centroid_dl_iter = iter(self.centroid_dl)
def get_example_from_class(self, class_num, seed=None):
class_idx = np.where(np.array(self.y_train) == class_num)[0]
idx = np.random.choice(class_idx, 1, replace=True)[0]
if self.X_CE is None:
X = self.X_train[idx]
else:
X = self.X_CE[idx]
return X
def get_class_examples(self, n_ex, seed=None):
class_examples = []
# try:
class_idxs = [np.where(np.array(self.y_train) == i)[0] for i in range(0, self.n_classes)]
if seed is not None:
np.random.seed(seed)
for i in range(self.n_classes):
idx = np.random.choice(class_idxs[i], n_ex, replace=True)
try:
class_examples.append(self.X_CE[idx])
except:
class_examples.append(self.X_train[idx])
return class_examples
def get_test_by_idx(self, idx, n_samples):
try:
A = self.X_test[idx]
y = self.y_test[idx]
if n_samples > 1:
A = A.unsqueeze(0).repeat(tuple([n_samples]) + tuple([1]*len(A.shape)))
except:
X, y = self.test_dataset[idx]
X = X.unsqueeze(0).tile(n_samples, 1, 1, 1)
return A, y