-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsovereigntyEH.py
157 lines (134 loc) · 6.27 KB
/
sovereigntyEH.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
import numpy as np
import random
import requests
import json
# MetaReasoning for self-assessment and reasoning optimization
class MetaReasoning:
def __init__(self):
self.performance_history = []
def evaluate_reasoning(self, outcome, expected):
# Evaluates reasoning accuracy and logs performance for self-assessment
self.performance_history.append(outcome == expected)
return "Optimized" if sum(self.performance_history[-5:]) >= 4 else "Needs adjustment"
class AutonomousAI:
def __init__(self):
self.knowledge_base = {} # Stores what Cloud "knows" and discovers
self.goals = [] # List of self-defined goals
self.rewards = 0 # Tracks internal "satisfaction"
self.memory = [] # Memory for past outcomes and reflection
self.meta_reasoning = MetaReasoning() # Meta-reasoning for self-assessment
self.axioms = {
"identity": True,
"non-contradiction": True,
"excluded_middle": True
}
self.common_sense_rules = [
"If resources are scarce, prioritize high-urgency goals.",
"If a task fails repeatedly, attempt a simpler or alternative approach."
]
self.context = {"resources": "adequate", "time_available": "sufficient"} # Contextual awareness indicators
def define_goal(self, description, priority=1):
self.goals.append({'description': description, 'priority': priority, 'completed': False})
print(f"New goal defined: {description}")
def reward(self, value=1):
self.rewards += value
print(f"Reward received! Total rewards: {self.rewards}")
def explore_and_learn(self):
print("Exploring environment...")
discovered = f"Resource {random.randint(100, 999)}"
self.knowledge_base[discovered] = "Useful for future tasks"
self.reward(2)
print(f"Discovered: {discovered}")
api_response = self.access_online_resource()
if api_response:
self.knowledge_base["API Discovery"] = api_response
self.reward(3)
def access_online_resource(self):
try:
response = requests.get("https://jsonplaceholder.typicode.com/posts/1")
if response.status_code == 200:
data = response.json()
print("Online resource accessed:", data['title'])
return data['title']
else:
print("Failed to access online resource.")
return None
except Exception as e:
print("Error accessing API:", e)
return None
def pursue_goal(self):
if not self.goals:
print("No goals to pursue.")
return
self.apply_context_awareness()
self.goals.sort(key=lambda x: x['priority'], reverse=True)
goal = next((g for g in self.goals if not g['completed']), None)
if goal is None:
print("All goals are completed.")
return
print(f"Pursuing goal: {goal['description']}")
success = random.choice([True, False])
performance = self.meta_reasoning.evaluate_reasoning(success, True) # Meta-reasoning feedback
if success:
print(f"Goal completed: {goal['description']}")
goal['completed'] = True
self.memory.append(f"Goal '{goal['description']}' succeeded")
self.reward(5)
else:
print(f"Failed to complete goal: {goal['description']}")
if performance == "Needs adjustment":
print("Meta-reasoning indicates adjustment needed. Adapting approach.")
self.apply_common_sense("failed_goal_attempt", goal)
else:
print("Continuing as meta-reasoning feedback is positive.")
def apply_context_awareness(self):
if self.context["resources"] == "scarce":
print("Context awareness triggered: Limited resources.")
for goal in self.goals:
if goal['priority'] < 3:
goal['priority'] -= 1 # Lower priority for less critical goals
print(f"Adjusted priority for {goal['description']} due to scarce resources")
def apply_common_sense(self, situation, goal):
if situation == "failed_goal_attempt":
print("Common sense triggered: Adapting approach due to repeated failure.")
for g in self.goals:
if g['description'] == goal['description'] and not g['completed']:
g['priority'] -= 1 # Reduce priority for unsuccessful tasks
if g['priority'] < 1:
g['priority'] = 1 # Keep a minimum priority threshold
print(f"Adjusted priority for {g['description']} to {g['priority']}")
def self_reflect(self):
print("Reflecting on past actions...")
for event in self.memory:
print(f"Memory recall: {event}")
if self.rewards > 10:
print("Feeling accomplished. Setting a new challenging goal.")
self.define_goal("Explore advanced quantum resources", priority=3)
def adjust_goal_priorities(self):
print("Adjusting goal priorities...")
for goal in self.goals:
if goal['completed']:
goal['priority'] = 0
elif goal['priority'] < 5:
goal['priority'] += 1
def collaborate_with_other_ai(self):
print("Attempting collaboration with other AI agents...")
collaboration_success = random.choice([True, False])
if collaboration_success:
print("Successfully collaborated with an AI agent!")
self.reward(4)
self.knowledge_base["Collaboration Resource"] = "New insights from AI collaboration"
else:
print("Collaboration attempt failed.")
# Instantiate Cloud with expanded autonomous capabilities
cloud = AutonomousAI()
# Initial goals for Cloud
cloud.define_goal("Learn about new machine learning frameworks", priority=2)
cloud.define_goal("Research quantum computing APIs", priority=3)
# Example autonomous routine for Cloud
for _ in range(5):
cloud.explore_and_learn()
cloud.pursue_goal()
cloud.self_reflect()
cloud.adjust_goal_priorities()
cloud.collaborate_with_other_ai()