-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrest_fft_log.py
44 lines (30 loc) · 1.16 KB
/
rest_fft_log.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
import pandas as pd
import numpy as np
import os
from tqdm import tqdm
os.chdir('C:\\Users\\user\\Documents\\2020년 2학기\\Raw\\rest Export')
home = os.getcwd()
raw_list = os.listdir()
result_df = pd.DataFrame(columns=['피험자','set','FAA','FAA2'])
for i in tqdm(range(len(raw_list))):
raw=raw_list[i]
set_nm = raw.split('_')[1]
p_nm = raw.split('_')[0]
p_nm = 'P'+p_nm[-2:]
data = pd.read_csv(raw)
col_nm = data.columns
t_len = len(data)/256
df = pd.DataFrame(columns = col_nm)
for t in range(int(t_len)):
df = df.append(data.iloc[(256*t+16):(256*t+24)].mean(), ignore_index=True)
df['FAA']=df['F4']/df['F3']
df['FAA2']=df['Right']/df['Left']
log_data = np.log(df[['FAA','FAA2']])
FAA = np.average(log_data['FAA'])
FAA2 = np.average(log_data['FAA2'])
result_df = result_df.append({'피험자':p_nm,'set':set_nm,'FAA':FAA,'FAA2':FAA2},ignore_index=True)
print(len(raw_list),'개 파일 전처리 완료')
os.chdir('C:\\Users\\user\\Documents\\2020년 2학기\\Raw')
f_nm = 'rest_FFT.csv'
result_df.to_csv(f_nm, index = False)
print(f_nm,'파일 생성 완료')