forked from fdennig/NICER
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathcreatePrandom.jl
738 lines (630 loc) · 40.3 KB
/
createPrandom.jl
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
##############################################################################################################################################################
# NICER computational model used for risk, inequality and climate change
##############################################################################################################################################################
# File: createPrandom.jl
# Content: part of the NICER integrated assessment model
##############################################################################################################################################################
# Source: original program running in Julia 0.6.4 can be found at https://github.com/fdennig/NICER
# Changes introduced: all changes required to run with Julia 1.1.0
# File release: March 16th 2019 (BM)
##############################################################################################################################################################
# Program required by:
# ../Optimization.jl
# Execution requires following files:
# ../Function_definitions.jl
# ../Data/certainPARAMETERS.jld
# ../Data/dparam_i.jld
##############################################################################################################################################################
######################################################################################################################################################
# Generate random draws of chosen parameters
#######################################################################################################################################################
# Creates nsample random draws of the parameters that we allow to vary randomly:
# Initial TFP growth rate (12) - gy0
# Initial decarbonization rate (12) - sighisT
# Atmosphere to upper ocean transfer coefficient (1) - TrM12
# Climate Sensitivity (1) - xi1
# Coefficient on T^7 in damage function (1) - psi7
# Initial world backstop price (1) - pw
# Elasticity of income wrt. damage (1) - ee
# POTENTIAL OTHER PARAMETERS (all scalar):
# du - backstop rate of decline before tau
# dd - backstop rate of decline after tau
# delsig - growth decline rate
# delA - decline in TFP growth in USA
# Crate - rate of convergence per decade
# Cratio - convergence ratio (in all regions except USA)
# uncomment if you run this file independently of Optimisation.jl
# using HDF5, JLD,
# using Distributions, LinearAlgebra # required for some regimes
#load dparam_i and certainPARAMETERS to get the data
println("+ Loading of model data files")
folder = pwd()
dparam_i = load("$folder/Data/dparam_i.jld")
# to call parameter values, use the syntax variable = dparam_i["variable"][2], except for q and tol where the '[2]' should be dropped
certainPARAMETERS = load("$folder/Data/certainPARAMETERS.jld")
# to call parameter values, use the syntax 'variable = certainPARAMETERS["variable"][2]'
function createP(regime_select; backstop_same = "Y", gy0M = dparam_i["gy0"][2]', gy0sd = ones(12)*0.0059, sighisTM = dparam_i["sighisT"][2]',
sighisTsd = ones(12)*0.0064, xi1M = 3, xi1sd = 1.4, eeM = 1, eesd = 0.3)
# default tfp growth mean and sd match Dietz Gollier Kessler, even though our means are much larger Dietz Asheim had 0.004
# default decarbonization rate mean and sd matches DGK, our means a bit larger. Dietz Asheim 0.004
# Climate sensitivity mean and sd approximately match DGK
# default Elasticity of income wrt. damage mean and sd are 1 and 0.3 respectively
# it is easy to make the variables below arguments to createP. right now they are simply assume to take the values below
# World Backstop Price
pwM = dparam_i["pw"][2]*1000
pwsd = 150 # matches DGK, our mean is about right, Dietz Asheim has 68
# Atmosphere to upper ocean transfer coefficient
TrM12M = dparam_i["TrM"][2][1,2]/100 #DGK have 0.06835
TrM12sd = 0.01079 #DGK have 0.020
# Coefficient on T^7 in damage function
psi7M = 0 # From Dietz Asheim 0.082
psi7sd = 0.028
#following lines are to add uncertainty to damage, which was done afterwards and therefore requires this fix
psi1 = certainPARAMETERS["psi1"][2] # mean values
psiMM = [psi1[1:2,:];ones(12)'.*psi7M]
mean_dam = damage(2.5,psiMM)./(ones(12) .+damage(2.5,psiMM))
#Julia_0_6: mean_dam = damage(2.5,psiMM)./(1+damage(2.5,psiMM))
# Crate: convergence rate of TFP
CrateM = dparam_i["Crate"][2]
# GENERAL RANDOMIZATION CODE FOR THE 29(?) VARIABLES WE WANT TO RANDOMIZE
if regime_select == 0
# we just use the means for each sample draw
nsample = 2
z = zeros(nsample,42) # temp object to hold the random draws
z = [repeat(gy0M',nsample) repeat(sighisTM',nsample) ones(nsample).*TrM12M ones(nsample).*xi1M zeros(nsample).*psi7M ones(nsample).*(pwM/1000) ones(nsample).*eeM repeat(psi1[2,:]',nsample) ones(nsample).*CrateM]
#Julia_0_6 : z = [repmat(gy0M',nsample) repmat(sighisTM',nsample) ones(nsample).*TrM12M ones(nsample).*xi1M zeros(nsample).*psi7M ones(nsample).*(pwM/1000) ones(nsample).*eeM repmat(psi1[2,:]',nsample) ones(nsample).*CrateM]
regime_select == 0.5
#Julia_0_6: regime_select == 0.5 ==>> ?????????????????? NO elseif ??????????????
# we just use the means for each sample draw
nsample = 10
z = zeros(nsample,42) # temp object to hold the random draws
z = [repeat(gy0M',nsample) repeat(sighisTM',nsample) ones(nsample).*TrM12M ones(nsample).*xi1M zeros(nsample).*psi7M ones(nsample).*(pwM/1000) ones(nsample).*eeM repeat(psi1[2,:]',nsample) ones(nsample).*CrateM]
#Julia_0_6 : z = [repmat(gy0M',nsample) repmat(sighisTM',nsample) ones(nsample).*TrM12M ones(nsample).*xi1M zeros(nsample).*psi7M ones(nsample).*(pwM/1000) ones(nsample).*eeM repmat(psi1[2,:]',nsample) ones(nsample).*CrateM]
elseif regime_select == 1
# total randomization
nsample = 100
z = zeros(nsample,42) # temp object to hold the random draws
# Initial TFP growth rate (12, by region) - gy0 - NO RANDOMIZATION
d_gy0 = MvNormal(vec(gy0M),diagm(gy0sd))
z[:,1:12] = repeat(gy0M',nsample) # min(max(rand(d_gy0,nsample)',0),0.1)
#Julia_0_6 : z[:,1:12] = repmat(gy0M',nsample) # min(max(rand(d_gy0,nsample)',0),0.1)
# Initial decarbonization rate (12) - sighisT
d_sighisT = MvNormal(vec(sighisTM),diagm(sighisTsd))
z[:,13:24] = rand(d_sighisT,nsample)'
# Atmosphere to upper ocean transfer coefficient - TrM12 - normal distribution truncated on [0,1] - perhaps Beta is better, need to calculate parameters
d_TrM12 = Beta((TrM12M/(1-TrM12M)),1) # Normal(TrM12M,TrM12sd) DGK use normal truncated below 0.1419.
z[:,25] = min(max(rand(d_TrM12,nsample)',0),1)
# Climate Sensitivity - xi1 - normal distribution, truncated at 0 !!!!!!!!!!!!!!!
d_xi1 = Normal(xi1M,xi1sd) #DGK use log-logistic
z[:,26] = max(rand(d_xi1,nsample),0)
# Coefficient on T^7 in damage function - psi7 - normal distribution, truncated on [0,∞)
d_psi7 = Normal(psi7M,psi7sd)
z[:,27] = max(rand(d_psi7,nsample),0)
# Initial world backstop price - pw - normal distribution truncated on [0.01,∞)
d_pw = Normal(pwM,pwsd)
z[:,28] = max(rand(d_pw,nsample),10)./1000
# Elasticity of income wrt. damage - ee - uniform distribution on [-1.1]
d_ee = Uniform(-1,1)
z[:,29] = rand(d_ee,nsample)
# quadratic damage coefficients (not random here yet)
z[:,30:41] = repeat(psi1[2,:]',nsample)
#Julia_0_6 : z[:,30:41] = repmat(psi1[2,:]',nsample)
# Crate: Beta distribution with alpha=2 and beta=18 (mean 0.1)
d_Crate = Beta(2,18)
z[:,42] = rand(d_Crate,nsample)
elseif regime_select == 2
# define preset regime: High initial TFP growth vs. Low initial TFP growth
nsample = 2
z = zeros(nsample,42) # temp object to hold the random draws
z = [repeat(gy0M',nsample) repeat(sighisTM',nsample) ones(nsample).*TrM12M ones(nsample).*xi1M zeros(nsample).*psi7M ones(nsample).*(pwM/1000) ones(nsample).*eeM repeat(psi1[2,:]',nsample) ones(nsample).*CrateM]
#Julia_0_6 : z = [repmat(gy0M',nsample) repmat(sighisTM',nsample) ones(nsample).*TrM12M ones(nsample).*xi1M zeros(nsample).*psi7M ones(nsample).*(pwM/1000) ones(nsample).*eeM repmat(psi1[2,:]',nsample) ones(nsample).*CrateM]
# Initial TFP growth rate (12, by region) - gy0 - plus/minus 3 sd
z[:,1:12] = [gy0M' + gy0sd'.*3; gy0M' - gy0sd'.*3]
elseif regime_select == 3
# define preset regime: High initial decarbonization rate vs. Low initial decarbonization rate
nsample = 2
z = zeros(nsample,42) # temp object to hold the random draws
z = [repeat(gy0M',nsample) repeat(sighisTM',nsample) ones(nsample).*TrM12M ones(nsample).*xi1M zeros(nsample).*psi7M ones(nsample).*(pwM/1000) ones(nsample).*eeM repeat(psi1[2,:]',nsample) ones(nsample).*CrateM]
#Julia_0_6 : z = [repmat(gy0M',nsample) repmat(sighisTM',nsample) ones(nsample).*TrM12M ones(nsample).*xi1M zeros(nsample).*psi7M ones(nsample).*(pwM/1000) ones(nsample).*eeM repmat(psi1[2,:]',nsample) ones(nsample).*CrateM]
# Initial decarbonization rate (12) - sighisT - plus/minus 3 sd
z[:,13:24] = [sighisTM' + sighisTsd'.*3; sighisTM' - sighisTsd'.*3]
elseif regime_select == 4
# define preset regime: High elasticity of income wrt damage vs. Low elasticity of income wrt damage
nsample = 2
z = zeros(nsample,42) # temp object to hold the random draws
z = [repeat(gy0M',nsample) repeat(sighisTM',nsample) ones(nsample).*TrM12M ones(nsample).*xi1M zeros(nsample).*psi7M ones(nsample).*(pwM/1000) ones(nsample).*eeM repeat(psi1[2,:]',nsample) ones(nsample).*CrateM]
#Julia_0_6 : z = [repmat(gy0M',nsample) repmat(sighisTM',nsample) ones(nsample).*TrM12M ones(nsample).*xi1M zeros(nsample).*psi7M ones(nsample).*(pwM/1000) ones(nsample).*eeM repmat(psi1[2,:]',nsample) ones(nsample).*CrateM]
# Elasticity of income wrt damage - ee - 0.8 and -0.8
z[:,29] = [0.8,-0.8]
elseif regime_select == 5
# define preset regime: High climate sensitivity vs. Low climate sensitivity
nsample = 2
z = zeros(nsample,42) # temp object to hold the random draws
z = [repeat(gy0M',nsample) repeat(sighisTM',nsample) ones(nsample).*TrM12M ones(nsample).*xi1M zeros(nsample).*psi7M ones(nsample).*(pwM/1000) ones(nsample).*eeM repeat(psi1[2,:]',nsample) ones(nsample).*CrateM]
#Julia_0_6 : z = [repmat(gy0M',nsample) repmat(sighisTM',nsample) ones(nsample).*TrM12M ones(nsample).*xi1M zeros(nsample).*psi7M ones(nsample).*(pwM/1000) ones(nsample).*eeM repmat(psi1[2,:]',nsample) ones(nsample).*CrateM]
# Climate sensitivity - xi1 - plus/minus 3 sd
z[:,26] = [xi1M + xi1sd*3; xi1M - xi1sd*3]
elseif regime_select == 6
# define preset regime: High atmosphere to upper ocean transfer coefficient vs. Low atmosphere to upper ocean transfer coefficient
nsample = 2
z = zeros(nsample,42) # temp object to hold the random draws
z = [repeat(gy0M',nsample) repeat(sighisTM',nsample) ones(nsample).*TrM12M ones(nsample).*xi1M zeros(nsample).*psi7M ones(nsample).*(pwM/1000) ones(nsample).*eeM repeat(psi1[2,:]',nsample) ones(nsample).*CrateM]
#Julia_0_6 : z = [repmat(gy0M',nsample) repmat(sighisTM',nsample) ones(nsample).*TrM12M ones(nsample).*xi1M zeros(nsample).*psi7M ones(nsample).*(pwM/1000) ones(nsample).*eeM repmat(psi1[2,:]',nsample) ones(nsample).*CrateM]
# Atmosphere to upper ocean transfer coefficient - plus/minus 3 sd
z[:,25] = [TrM12M + TrM12sd*3; TrM12M - TrM12sd*3]
elseif regime_select == 7
# define preset regime: High initial world backstop price vs. Low initial world backstop price
nsample = 2
z = zeros(nsample,42) # temp object to hold the random draws
z = [repeat(gy0M',nsample) repeat(sighisTM',nsample) ones(nsample).*TrM12M ones(nsample).*xi1M zeros(nsample).*psi7M ones(nsample).*(pwM/1000) ones(nsample).*eeM repeat(psi1[2,:]',nsample) ones(nsample).*CrateM]
#Julia_0_6 : z = [repmat(gy0M',nsample) repmat(sighisTM',nsample) ones(nsample).*TrM12M ones(nsample).*xi1M zeros(nsample).*psi7M ones(nsample).*(pwM/1000) ones(nsample).*eeM repmat(psi1[2,:]',nsample) ones(nsample).*CrateM]
# Initial world backstop price - pw - plus/minus 3 sd
z[:,28] = [pwM + pwsd*3; pwM - pwsd*3]./1000
elseif regime_select == 8
# define preset regime: High T7 coefficient vs. Low T7 coefficient
nsample = 2
z = zeros(nsample,42) # temp object to hold the random draws
z = [repeat(gy0M',nsample) repeat(sighisTM',nsample) ones(nsample).*TrM12M ones(nsample).*xi1M zeros(nsample).*psi7M ones(nsample).*(pwM/1000) ones(nsample).*eeM repeat(psi1[2,:]',nsample) ones(nsample).*CrateM]
#Julia_0_6 : z = [repmat(gy0M',nsample) repmat(sighisTM',nsample) ones(nsample).*TrM12M ones(nsample).*xi1M zeros(nsample).*psi7M ones(nsample).*(pwM/1000) ones(nsample).*eeM repmat(psi1[2,:]',nsample) ones(nsample).*CrateM]
# T7 coefficient - psi7 - plus 3sd/0
z[:,27] = [0.318; 0] # HARDCODING REPLACES: [psi7M + psi7sd*6,max(psi7M - psi7sd*3,0)]
elseif regime_select == 9
# define preset regime: Deciles of TFP (all else fixed at means)
nsample = 10 # for deciles
z = zeros(nsample,42) # temp object to hold the random draws
z = [repeat(gy0M',nsample) repeat(sighisTM',nsample) ones(nsample).*TrM12M ones(nsample).*xi1M zeros(nsample).*psi7M ones(nsample).*(pwM/1000) ones(nsample).*eeM repeat(psi1[2,:]',nsample) ones(nsample).*CrateM]
#Julia_0_6 : z = [repmat(gy0M',nsample) repmat(sighisTM',nsample) ones(nsample).*TrM12M ones(nsample).*xi1M zeros(nsample).*psi7M ones(nsample).*(pwM/1000) ones(nsample).*eeM repmat(psi1[2,:]',nsample) ones(nsample).*CrateM]
# change gy0 to go from high to low in deciles
decs = [0.95 0.85 0.75 0.65 0.55 0.45 0.35 0.25 0.15 0.05] # midpoints of each decile
# d_gy0 = MvNormal(vec(gy0M),diagm(gy0sd)) # generates normal distribution
QQ = zeros(12,10)
for i = 1:12
QQ[i,:] = quantile(Normal(gy0M[i],gy0sd[i]),decs)
end
z[:,1:12] = QQ'
elseif regime_select == 95
# define preset regime: Deciles of TFP (all else fixed at means)
nsample = 11 # for deciles
z = zeros(nsample,42) # temp object to hold the random draws
z = [repeat(gy0M',nsample) repeat(sighisTM',nsample) ones(nsample).*TrM12M ones(nsample).*xi1M zeros(nsample).*psi7M ones(nsample).*(pwM/1000) ones(nsample).*eeM repeat(psi1[2,:]',nsample) ones(nsample).*CrateM]
#Julia_0_6 : z = [repmat(gy0M',nsample) repmat(sighisTM',nsample) ones(nsample).*TrM12M ones(nsample).*xi1M zeros(nsample).*psi7M ones(nsample).*(pwM/1000) ones(nsample).*eeM repmat(psi1[2,:]',nsample) ones(nsample).*CrateM]
# Change gy0 to go from high to low in deciles
decs = [0.95 0.85 0.75 0.65 0.55 0.5 0.45 0.35 0.25 0.15 0.05] # midpoints of each decile
# d_gy0 = MvNormal(vec(gy0M),diagm(gy0sd)) # generates normal distribution
QQ = zeros(12,11)
for i = 1:12
QQ[i,:] = quantile(Normal(gy0M[i],gy0sd[i]),decs)
end
z[:,1:12] = QQ'
elseif regime_select == 10
# define preset regime: Deciles of decarb rates (all else fixed at means)
nsample = 10 # for deciles
z = zeros(nsample,42) # temp object to hold the random draws
z = [repeat(gy0M',nsample) repeat(sighisTM',nsample) ones(nsample).*TrM12M ones(nsample).*xi1M zeros(nsample).*psi7M ones(nsample).*(pwM/1000) ones(nsample).*eeM repeat(psi1[2,:]',nsample) ones(nsample).*CrateM]
#Julia_0_6 : z = [repmat(gy0M',nsample) repmat(sighisTM',nsample) ones(nsample).*TrM12M ones(nsample).*xi1M zeros(nsample).*psi7M ones(nsample).*(pwM/1000) ones(nsample).*eeM repmat(psi1[2,:]',nsample) ones(nsample).*CrateM]
# Change sighisT to go from high to low in deciles
decs = [0.95 0.85 0.75 0.65 0.55 0.45 0.35 0.25 0.15 0.05] # midpoints of each decile
# d_sighisT = MvNormal(vec(sighisTM),diagm(sighisTsd)) # generates normal distribution
QQ = zeros(12,10)
for i = 1:12
QQ[i,:] = quantile(Normal(sighisTM[i],sighisTsd[i]),decs)
end
z[:,13:24] = QQ'
elseif regime_select == 105
# define preset regime: Deciles of decarb rates (all else fixed at means)
nsample = 11 # for deciles
z = zeros(nsample,42) # temp object to hold the random draws
z = [repeat(gy0M',nsample) repeat(sighisTM',nsample) ones(nsample).*TrM12M ones(nsample).*xi1M zeros(nsample).*psi7M ones(nsample).*(pwM/1000) ones(nsample).*eeM repeat(psi1[2,:]',nsample) ones(nsample).*CrateM]
#Julia_0_6 : z = [repmat(gy0M',nsample) repmat(sighisTM',nsample) ones(nsample).*TrM12M ones(nsample).*xi1M zeros(nsample).*psi7M ones(nsample).*(pwM/1000) ones(nsample).*eeM repmat(psi1[2,:]',nsample) ones(nsample).*CrateM]
# Change sighisT to go from high to low in deciles
decs = [0.95 0.85 0.75 0.65 0.55 0.5 0.45 0.35 0.25 0.15 0.05] # midpoints of each decile
# d_sighisT = MvNormal(vec(sighisTM),diagm(sighisTsd)) # generates normal distribution
QQ = zeros(12,11)
for i = 1:12
QQ[i,:] = quantile(Normal(sighisTM[i],sighisTsd[i]),decs)
end
z[:,13:24] = QQ'
elseif regime_select == 11
# define preset regime: Deciles - High TFP and High decarb vs Low TFP and Low decarb
nsample = 10 # for deciles
z = zeros(nsample,42) # temp object to hold the random draws
z = [repeat(gy0M',nsample) repeat(sighisTM',nsample) ones(nsample).*TrM12M ones(nsample).*xi1M zeros(nsample).*psi7M ones(nsample).*(pwM/1000) ones(nsample).*eeM repeat(psi1[2,:]',nsample) ones(nsample).*CrateM]
#Julia_0_6 : z = [repmat(gy0M',nsample) repmat(sighisTM',nsample) ones(nsample).*TrM12M ones(nsample).*xi1M zeros(nsample).*psi7M ones(nsample).*(pwM/1000) ones(nsample).*eeM repmat(psi1[2,:]',nsample) ones(nsample).*CrateM]
# Change gy0 and sighisT to go from high to low in deciles
decs = [0.95 0.85 0.75 0.65 0.55 0.45 0.35 0.25 0.15 0.05] # midpoints of each decile
QQ = zeros(24,10)
for i = 1:12
QQ[i,:] = quantile(Normal(gy0M[i],gy0sd[i]),decs)
end
for i = 13:24
QQ[i,:] = quantile(Normal(sighisTM[i-12],sighisTsd[i-12]),decs)
end
z[:,1:24] = QQ'
elseif regime_select == 12
# define preset regime: Deciles - High TFP and Low decarb vs. Low TFP and High decarb
nsample = 10 # for deciles
z = zeros(nsample,42) # temp object to hold the random draws
z = [repeat(gy0M',nsample) repeat(sighisTM',nsample) ones(nsample).*TrM12M ones(nsample).*xi1M zeros(nsample).*psi7M ones(nsample).*(pwM/1000) ones(nsample).*eeM repeat(psi1[2,:]',nsample) ones(nsample).*CrateM]
#Julia_0_6 : z = [repmat(gy0M',nsample) repmat(sighisTM',nsample) ones(nsample).*TrM12M ones(nsample).*xi1M zeros(nsample).*psi7M ones(nsample).*(pwM/1000) ones(nsample).*eeM repmat(psi1[2,:]',nsample) ones(nsample).*CrateM]
# Change gy0 and sighisT to go from high to low in deciles
decs_gy = [0.95 0.85 0.75 0.65 0.55 0.45 0.35 0.25 0.15 0.05] # midpoints of each decile for gy0 (high to low)
decs_sig = [0.05 0.15 0.25 0.35 0.45 0.55 0.65 0.75 0.85 0.95] # midpoints of each decile for gy0 (low to high)
QQ = zeros(24,10)
for i = 1:12
QQ[i,:] = quantile(Normal(gy0M[i],gy0sd[i]),decs_gy)
end
for i = 13:24
QQ[i,:] = quantile(Normal(sighisTM[i-12],sighisTsd[i-12]),decs_sig)
end
z[:,1:24] = QQ'
elseif regime_select == 13
# define preset regime: Deciles of elasticity of income wrt damage
nsample = 10 # for deciles
z = zeros(nsample,42) # temp object to hold the random draws
z = [repeat(gy0M',nsample) repeat(sighisTM',nsample) ones(nsample).*TrM12M ones(nsample).*xi1M zeros(nsample).*psi7M ones(nsample).*(pwM/1000) ones(nsample).*eeM repeat(psi1[2,:]',nsample) ones(nsample).*CrateM]
#Julia_0_6 : z = [repmat(gy0M',nsample) repmat(sighisTM',nsample) ones(nsample).*TrM12M ones(nsample).*xi1M zeros(nsample).*psi7M ones(nsample).*(pwM/1000) ones(nsample).*eeM repmat(psi1[2,:]',nsample) ones(nsample).*CrateM]
# Change ee to go from high to low in deciles
decs = [0.95 0.85 0.75 0.65 0.55 0.45 0.35 0.25 0.15 0.05] # midpoints of each decile
QQ = zeros(1,10)
QQ[1,:] = [0.9 0.7 0.5 0.3 0.1 -0.1 -0.3 -0.5 -0.7 -0.9] # quantile(Uniform(-1,1),decs)
z[:,29] = QQ'
elseif regime_select == 14
# define preset regime: Deciles - High TFP and High ee vs. Low TFP and Low ee
nsample = 10 # for deciles
z = zeros(nsample,42) # temp object to hold the random draws
z = [repeat(gy0M',nsample) repeat(sighisTM',nsample) ones(nsample).*TrM12M ones(nsample).*xi1M zeros(nsample).*psi7M ones(nsample).*(pwM/1000) ones(nsample).*eeM repeat(psi1[2,:]',nsample) ones(nsample).*CrateM]
#Julia_0_6 : z = [repmat(gy0M',nsample) repmat(sighisTM',nsample) ones(nsample).*TrM12M ones(nsample).*xi1M zeros(nsample).*psi7M ones(nsample).*(pwM/1000) ones(nsample).*eeM repmat(psi1[2,:]',nsample) ones(nsample).*CrateM]
# Change gy0 and sighisT to go from high to low in deciles
decs = [0.95 0.85 0.75 0.65 0.55 0.45 0.35 0.25 0.15 0.05] # midpoints of each decile (high to low)
QQ = zeros(13,10)
for i = 1:12
QQ[i,:] = quantile(Normal(gy0M[i],gy0sd[i]),decs)
end
for i = 13
QQ[i,:] = [0.9 0.7 0.5 0.3 0.1 -0.1 -0.3 -0.5 -0.7 -0.9] # quantile(Uniform(-1,1),decs)
end
z[:,1:12] = QQ[1:12,:]'
z[:,29] = QQ[13,:]'
elseif regime_select == 15
# define preset regime: Deciles - High TFP and Low ee vs. Low TFP and High ee
nsample = 10 # for deciles
z = zeros(nsample,42) # temp object to hold the random draws
z = [repeat(gy0M',nsample) repeat(sighisTM',nsample) ones(nsample).*TrM12M ones(nsample).*xi1M zeros(nsample).*psi7M ones(nsample).*(pwM/1000) ones(nsample).*eeM repeat(psi1[2,:]',nsample) ones(nsample).*CrateM]
#Julia_0_6 : z = [repmat(gy0M',nsample) repmat(sighisTM',nsample) ones(nsample).*TrM12M ones(nsample).*xi1M zeros(nsample).*psi7M ones(nsample).*(pwM/1000) ones(nsample).*eeM repmat(psi1[2,:]',nsample) ones(nsample).*CrateM]
# Change gy0 and sighisT to go from high to low in deciles
decs_gy = [0.95 0.85 0.75 0.65 0.55 0.45 0.35 0.25 0.15 0.05] # midpoints of each decile for gy0 (high to low)
decs_ee = [0.05 0.15 0.25 0.35 0.45 0.55 0.65 0.75 0.85 0.95] # midpoints of each decile for gy0 (low to high)
QQ = zeros(13,10)
for i = 1:12
QQ[i,:] = quantile(Normal(gy0M[i],gy0sd[i]),decs_gy)
end
for i = 13
QQ[i,:] = [-0.9 -0.7 -0.5 -0.3 -0.1 0.1 0.3 0.5 0.7 0.9] # quantile(Uniform(-1,1),decs_ee)
end
z[:,1:12] = QQ[1:12,:]'
z[:,29] = QQ[13,:]'
elseif regime_select == 16
# we just use the means for each sample draw except for climate sensitivity.
decs = [0.95 0.85 0.75 0.65 0.55 0.45 0.35 0.25 0.15 0.05]
nsample = length(decs)
z = zeros(nsample,42) # temp object to hold the random draws
z = [repeat(gy0M',nsample) repeat(sighisTM',nsample) ones(nsample).*TrM12M ones(nsample).*xi1M zeros(nsample).*psi7M ones(nsample).*(pwM/1000) ones(nsample).*eeM repeat(psi1[2,:]',nsample) ones(nsample).*CrateM]
#Julia_0_6 : z = [repmat(gy0M',nsample) repmat(sighisTM',nsample) ones(nsample).*TrM12M ones(nsample).*xi1M zeros(nsample).*psi7M ones(nsample).*(pwM/1000) ones(nsample).*eeM repmat(psi1[2,:]',nsample) ones(nsample).*CrateM]
Q = zeros(1,10)
d_xi1 = Normal(xi1M,xi1sd)
Q[1,:] = quantile(d_xi1,decs)
QQ = Q'
z[:,26] = QQ
elseif regime_select == 165
# we just use the means for each sample draw
decs = [0.95 0.85 0.75 0.65 0.55 0.5 0.45 0.35 0.25 0.15 0.05]
nsample = length(decs)
z = zeros(nsample,42) # temp object to hold the random draws
z = [repeat(gy0M',nsample) repeat(sighisTM',nsample) ones(nsample).*TrM12M ones(nsample).*xi1M zeros(nsample).*psi7M ones(nsample).*(pwM/1000) ones(nsample).*eeM repeat(psi1[2,:]',nsample) ones(nsample).*CrateM]
#Julia_0_6 : z = [repmat(gy0M',nsample) repmat(sighisTM',nsample) ones(nsample).*TrM12M ones(nsample).*xi1M zeros(nsample).*psi7M ones(nsample).*(pwM/1000) ones(nsample).*eeM repmat(psi1[2,:]',nsample) ones(nsample).*CrateM]
Q = zeros(1,11)
d_xi1 = Normal(xi1M,xi1sd)
Q[1,:] = quantile(d_xi1,decs)
QQ = Q'
z[:,26] = QQ
elseif regime_select == 161
# loglogistic truncated at 0.75, with mean 3 and standard deviation 1.4
decs = [0.95 0.85 0.75 0.65 0.55 0.45 0.35 0.25 0.15 0.05]
nsample = length(decs)
z = zeros(nsample,42) # temp object to hold the random draws
z = [repeat(gy0M',nsample) repeat(sighisTM',nsample) ones(nsample).*TrM12M ones(nsample).*xi1M ones(nsample).*psi7M ones(nsample).*(pwM/1000) ones(nsample).*eeM repeat(psi1[2,:]',nsample) ones(nsample).*CrateM] # fills up with means before making changes
#Julia_0_6 : z = [repmat(gy0M',nsample) repmat(sighisTM',nsample) ones(nsample).*TrM12M ones(nsample).*xi1M ones(nsample).*psi7M ones(nsample).*(pwM/1000) ones(nsample).*eeM repmat(psi1[2,:]',nsample) ones(nsample).*CrateM] # fills up with means before making changes
Q = zeros(1,10)
d_log_xi1 = Logistic(log(2.75),1/(4.35))
d_log_x1_t = Truncated(d_log_xi1, 0.75, Inf)
Q[1,:] = exp(quantile(d_log_x1_t,decs))
QQ = Q'
z[:,26] = QQ
elseif regime_select == 1615
# loglogistic truncated at 0.75, with mean 3 and standard deviation 1.4
decs = [0.95 0.85 0.75 0.65 0.55 0.5 0.45 0.35 0.25 0.15 0.05]
nsample = length(decs)
z = zeros(nsample,42) # temp object to hold the random draws
z = [repeat(gy0M',nsample) repeat(sighisTM',nsample) ones(nsample).*TrM12M ones(nsample).*xi1M ones(nsample).*psi7M ones(nsample).*(pwM/1000) ones(nsample).*eeM repeat(psi1[2,:]',nsample) ones(nsample).*CrateM] # fills up with means before making changes
#Julia_0_6 : z = [repmat(gy0M',nsample) repmat(sighisTM',nsample) ones(nsample).*TrM12M ones(nsample).*xi1M ones(nsample).*psi7M ones(nsample).*(pwM/1000) ones(nsample).*eeM repmat(psi1[2,:]',nsample) ones(nsample).*CrateM] # fills up with means before making changes
Q = zeros(1,11)
d_log_xi1 = Logistic(log(2.75),1/(4.35))
d_log_x1_t = Truncated(d_log_xi1, 0.75, Inf)
Q[1,:] = exp(quantile(d_log_x1_t,decs))
QQ = Q'
z[:,26] = QQ
elseif regime_select == 17
# MC approach with mean damage N(-0.0094,1.28) (Tol, 2012) - full correlation across regions
srand(123) # Setting the seed
cv = 1.28/0.94
stdv = vec(cv.*mean_dam.*100) # all regions have the same coefficient of variation
d = Normal(0.94,1.28) # global distribution of % damages
nsample = 100
x = rand(d,nsample)
# x = quantile(d,[0.05,0.15,0.25,0.35,0.45,0.55,0.65,0.75,0.85,0.95])
x_dam = zeros(12,nsample)
for i = 1:nsample
x_dam[:,i] = ((x[i] - 0.94)/1.28).*stdv./100 + mean_dam # convert to regional uncertainty via standard normal comparison
end
z = zeros(nsample,42) # temp object to hold the random draws
psi2 = zeros(nsample,12)
for i = 1:nsample
psi2[i,:] = ((x_dam[:,i] - (0.01*psi1[1,:].*(2.5) + 0.01*psi7M.*(2.5^7)).*(1-x_dam[:,i]))./((2.5^2).*(1-x_dam[:,i])))'.*100
end
z = [repeat(gy0M',nsample) repeat(sighisTM',nsample) ones(nsample).*TrM12M ones(nsample).*xi1M zeros(nsample).*psi7M ones(nsample).*(pwM/1000) ones(nsample).*eeM psi2 ones(nsample).*CrateM]
#Julia_0_6 : z = [repmat(gy0M',nsample) repmat(sighisTM',nsample) ones(nsample).*TrM12M ones(nsample).*xi1M zeros(nsample).*psi7M ones(nsample).*(pwM/1000) ones(nsample).*eeM psi2 ones(nsample).*CrateM]
elseif regime_select == 175
# MC approach with mean damage N(-0.0094,1.28) (Tol, 2012) - full correlation across regions
srand(123) # Setting the seed
cv = 1.28/0.94
stdv = vec(cv.*mean_dam.*100) # all regions have the same coefficient of variation
d = Normal(0.94,1.28) # global distribution of % damages
nsample = 11
decs = [0.95 0.85 0.75 0.65 0.55 0.5 0.45 0.35 0.25 0.15 0.05]
# x = rand(d,nsample)
x = quantile(d,decs)
x_dam = zeros(12,nsample)
for i = 1:nsample
x_dam[:,i] = ((x[i] - 0.94)/1.28).*stdv./100 + mean_dam # convert to regional uncertainty via standard normal comparison
end
z = zeros(nsample,42) # temp object to hold the random draws
psi2 = zeros(nsample,12)
for i = 1:nsample
psi2[i,:] = ((x_dam[:,i] - (0.01*psi1[1,:].*(2.5) + 0.01*psi7M.*(2.5^7)).*(1-x_dam[:,i]))./((2.5^2).*(1-x_dam[:,i]))).*100
end
z = [repeat(gy0M',nsample) repeat(sighisTM',nsample) ones(nsample).*TrM12M ones(nsample).*xi1M zeros(nsample).*psi7M ones(nsample).*(pwM/1000) ones(nsample).*eeM psi2 ones(nsample).*CrateM]
#Julia_0_6 : z = [repmat(gy0M',nsample) repmat(sighisTM',nsample) ones(nsample).*TrM12M ones(nsample).*xi1M zeros(nsample).*psi7M ones(nsample).*(pwM/1000) ones(nsample).*eeM psi2 ones(nsample).*CrateM]
elseif regime_select == 18
# beta distribution for Crate, Beta(2,18)
nsample = 10
z = zeros(nsample,42)
z = [repeat(gy0M',nsample) repeat(sighisTM',nsample) ones(nsample).*TrM12M ones(nsample).*xi1M ones(nsample).*psi7M ones(nsample).*(pwM/1000) ones(nsample).*eeM repeat(psi1[2,:]',nsample) ones(nsample).*CrateM]
#Julia_0_6 : z = [repmat(gy0M',nsample) repmat(sighisTM',nsample) ones(nsample).*TrM12M ones(nsample).*xi1M ones(nsample).*psi7M ones(nsample).*(pwM/1000) ones(nsample).*eeM repmat(psi1[2,:]',nsample) ones(nsample).*CrateM]
decs = [0.95 0.85 0.75 0.65 0.55 0.45 0.35 0.25 0.15 0.05]
d_Crate = Beta(2,18)
Q = zeros(1,10)
Q[1,:] = quantile(d_Crate,decs)
z[:,42] = Q'
elseif regime_select == 185
# beta distribution for Crate, Beta(2,18)
nsample = 11
z = zeros(nsample,42)
z = [repeat(gy0M',nsample) repeat(sighisTM',nsample) ones(nsample).*TrM12M ones(nsample).*xi1M ones(nsample).*psi7M ones(nsample).*(pwM/1000) ones(nsample).*eeM repeat(psi1[2,:]',nsample) ones(nsample).*CrateM]
#Julia_0_6 : z = [repmat(gy0M',nsample) repmat(sighisTM',nsample) ones(nsample).*TrM12M ones(nsample).*xi1M ones(nsample).*psi7M ones(nsample).*(pwM/1000) ones(nsample).*eeM repmat(psi1[2,:]',nsample) ones(nsample).*CrateM]
decs = [0.95 0.85 0.75 0.65 0.55 0.5 0.45 0.35 0.25 0.15 0.05]
d_Crate = Beta(2,18)
Q = zeros(1,nsample)
Q[1,:] = quantile(d_Crate,decs)
z[:,42] = Q'
elseif regime_select == 19
srand(123) # Setting the seed
cv = 1.28/0.94
stdv = vec(cv.*mean_dam.*100) # all regions have the same coefficient of variation
d = Normal(0.94,1.28) # global distribution of % damages
nsample = 10
# x = rand(d,nsample)
x = quantile(d,[0.05,0.15,0.25,0.35,0.45,0.55,0.65,0.75,0.85,0.95])
x_dam = zeros(12,nsample)
for i = 1:nsample
x_dam[:,i] = ((x[i] - 0.94)/1.28).*stdv./100 + mean_dam # convert to regional uncertainty via standard normal comparison
end
z = zeros(nsample,42) # temp object to hold the random draws
psi1R = zeros(nsample,12)
for i = 1:nsample
psi1R[i,:] = ((x_dam[:,i] - (0.01*psi1[2,:].*(2.5^2) + 0.01*psi7M.*(2.5^7)).*(1-x_dam[:,i]))./((2.5).*(1-x_dam[:,i])))'.*100
end
z = [repeat(gy0M',nsample) repeat(sighisTM',nsample) ones(nsample).*TrM12M ones(nsample).*xi1M zeros(nsample).*psi7M ones(nsample).*(pwM/1000) ones(nsample).*eeM psi1R ones(nsample).*CrateM]
#Julia_0_6 : z = [repmat(gy0M',nsample) repmat(sighisTM',nsample) ones(nsample).*TrM12M ones(nsample).*xi1M zeros(nsample).*psi7M ones(nsample).*(pwM/1000) ones(nsample).*eeM psi1R ones(nsample).*CrateM]
elseif regime_select == 20
# we just use the means for each sample draw except for climate sensitivity.
decs = [0.95 0.85 0.75 0.65 0.55 0.45 0.35 0.25 0.15 0.05]
nsample = length(decs)
z = zeros(nsample,42) # temp object to hold the random draws
z = [repeat(gy0M',nsample) repeat(sighisTM',nsample) ones(nsample).*TrM12M ones(nsample).*xi1M zeros(nsample).*psi7M ones(nsample).*(pwM/1000) ones(nsample).*eeM repeat(psi1[2,:]',nsample) ones(nsample).*CrateM]
#Julia_0_6 : z = [repmat(gy0M',nsample) repmat(sighisTM',nsample) ones(nsample).*TrM12M ones(nsample).*xi1M zeros(nsample).*psi7M ones(nsample).*(pwM/1000) ones(nsample).*eeM repmat(psi1[2,:]',nsample) ones(nsample).*CrateM]
Q = zeros(1,nsample)
ee = Normal(eeM,eesd)
Q[1,:] = quantile(ee,decs)
QQ = Q'
z[:,29] = QQ
end
DEEPrandP = Deep(z[:,1:12],z[:,13:24],z[:,25].*100,z[:,26],z[:,27],z[:,28],z[:,29],z[:,30:41],z[:,42])
##################################################################################################################################################################
# DEEPrandP can now be used along with certainPARAMETERS to generate the full arrays of exogenous parameters.
##################################################################################################################################################################
# Build the full array of exogenous parameters.
# Backstop price, pb
# requires following parameters:
# Th inital to final backstop price ratio
# RL region to world backstop price ratio
# du rate of decline before tau
# dd rate of decline after tau
# tau period in which rate of decline changes
# p0 = RL*pw initial vector of backstop prices 1000 2005 USD per tC
# (for now, manually pull the certain parameter values from certainPARAMETERS.mat file)
Th = certainPARAMETERS["Th"][2]
if backstop_same == "Y"
RL = ones(1,12)
elseif backstop_same == "N"
RL = certainPARAMETERS["RL"][2]
end
du = certainPARAMETERS["du"][2] # could be randomized
dd = certainPARAMETERS["dd"][2] # could be randomized
tau = certainPARAMETERS["tau"][2]
# get pw from DEEPrandP
pw = DEEPrandP.pw
# build time series for backstop using assumed functional form:
pb = backstop(Th,RL,pw,du,dd,tau,nsample).*1000 # multiply by 1000 to get correct units
# Emissions to output ratio, sigma
# requires following certain parameters
# gT trend growth rate
# delsig growth decline rate
# adj15 2015 adjustment factor
# Y0 2005 output trillions 2005 USD 1xI
# E0 2005 emissions Mtons of CO2 equivalent 1xI
# (for now, manually pull the certain parameter values from certainPARAMETERS.mat file)
gT = certainPARAMETERS["gT"][2]
delsig = certainPARAMETERS["delsig"][2] # could be randomized
adj15 = certainPARAMETERS["adj15"][2]
Y0 = certainPARAMETERS["Y0"][2]
E0 = certainPARAMETERS["E0"][2]
# requires following random parameters
sighisT = DEEPrandP.sighisT
# build time series for sigma using assumed functional form
sigma = sig(gT,delsig,sighisT,adj15,Y0,E0,nsample)
# Multiplicative parameter in the abatement cost function, th1
# requires following certain parameters
# th2 - exponent in the abatement cost function
th2 = certainPARAMETERS["th2"][2]
# build time series for th1 using th2, sigma and pb
th1 = (pb.*sigma)/(1000*th2) # NOTE I AM NOW DIVIDING BY 1000 TO UNDO THE EARLIER RESCALING OF pb!
# Population path for all 12 regions, L
# requires following certain parameters
# Pop0 - population in 2005
# poprates - exogenous population growth rates for the first 30 periods (30 x 12 array)
Pop0 = certainPARAMETERS["Pop0"][2]
poprates = certainPARAMETERS["poprates"][2]
# build time series for L using Pop0 and poprates
L = population(Pop0,poprates,nsample)./1000 # divide by 1000 to get correct units
# Exogenous forcing (from other GHGs), Fex
# requires certain parameters
# Fex2000 - forcings in 2000
# Fex 2100 - forcings in 2100
Fex2000 = certainPARAMETERS["Fex2000"][2]
Fex2100 = certainPARAMETERS["Fex2100"][2]
# build time series for Fex using Fex2000 and Fex2100
Fex = forcingEx(Fex2000,Fex2100)
# TFP
# requires following certain parameters
# A0 - initial TFP in each region
# tgl - long run TFP growth in USA
# delA - decline in TFP growth in USA
# gamma - elasticity of capital in production
# Crate - rate of convergence per decade
# Cratio - convergence ratio (in all regions except USA)
# y0 - initial per capital consumption in each region
A0 = certainPARAMETERS["A0"][2]
tgl = certainPARAMETERS["tgl"][2]
delA = certainPARAMETERS["delA"][2] # could be randomized
gamma = certainPARAMETERS["gamm"][2]
#Crate = certainPARAMETERS["Crate"][2] # could be randomized
Cratio = certainPARAMETERS["Cratio"][2] # could be randomized
y0 = certainPARAMETERS["y0"][2]
# requires the following random parameters
gy0 = DEEPrandP.gy0
Crate = DEEPrandP.Crate
# build time series for TFP
tfp = tfactorp(A0,gy0,tgl,delA,gamma,Crate,Cratio,y0,nsample)
# Emissions from land use change, EL
# requires following certain parameters
# EL0 - initial emissions due to land use change in each region
# delL - rate of decline of these
EL0 = certainPARAMETERS["EL0"][2]
delL = certainPARAMETERS["delL"][2]
# build time series for EL
EL = landuse(EL0,delL)
# Temperature forcing and temperature flow parameters, xi (nsample of them!)
# requires following certain parameters
# xi2 - 6 right elements of the vector
xi2 = certainPARAMETERS["xi"][2]
# requires the random parameter xi1 (climate sensitivity)
xi1 = DEEPrandP.xi1
# build
xi = [repeat(xi2[:,1:2],nsample) xi1 repeat(xi2[:,4:7],nsample)]
#Julia_0_6: xi = [repmat(xi2[:,1:2],nsample) xi1 repmat(xi2[:,4:7],nsample)]
# Transition matrix for temperature flow, TrT - there are nsample of them!
# function of xi
TrT = zeros(nsample,2,2)
for i = 1:nsample
TrT[i,:,:] = [-xi[i,2]*(xi[i,1]/xi[i,3]+xi[i,4]) xi[i,2]*xi[i,4] ; xi[i,5] -xi[i,5]]' + [1 0; 0 1]
#Julia_0_6: TrT[i,:,:] = [-xi[i,2]*(xi[i,1]/xi[i,3]+xi[i,4]) xi[i,2]*xi[i,4] ; xi[i,5] -xi[i,5]]' + eye(2)
end
# Transition matrix for carbon flow, TrM (there will be nsample of them!)
# requires the following certain parameters
# TrML - lower two thirds of matrix
TrML = [0.0470 0.9480 0.0050;0 0.0008 0.9992].*100
# certainPARAMETERS["TrML"][2]
# requires the random parameter TrM12
TrM12 = DEEPrandP.TrM12'
# build TrM
TrM_ = zeros(3,3,nsample) # we have nsample 3x3 matrices (wrong order to check that TrM_ fills correctly)
for i = 1:nsample
TrM_[:,:,i] = [100 - TrM12[i] TrM12[i] 0 ; TrML]
end
TrM = permutedims(TrM_,[3 1 2])./100 # divide by 100 to get in correct units
# Damage parameters, psi (nsample sets now)
# psi1 - from Nordhaus (5x12 matrix) - defined early in function definition
# requires the random parameter psi7
psi7 = DEEPrandP.psi7
# build psi
psi_ = zeros(3,12,nsample) # note order of dimensions to check easily
if regime_select == 19
for i = 1:nsample
psi_[1,:,i] = DEEPrandP.psi2[i,:]
psi_[2,:,i] = psi1[2,:]
psi_[3,:,i] = repeat(psi7,1,12)[i,:]
#Julia_0_6: psi_[3,:,i] = repmat(psi7,1,12)[i,:]
end
else
for i = 1:nsample
psi_[1,:,i] = psi1[1,:]
psi_[2,:,i] = DEEPrandP.psi2[i,:]
psi_[3,:,i] = repeat(psi7,1,12)[i,:]
#Julia_0_6: psi_[3,:,i] = repmat(psi7,1,12)[i,:]
end
end
psi = permutedims(psi_,[3 1 2])
# END OF SECTION
#######################################################################################################################################################################################
# We now have the full set of parameter arrays over time, regions, and randomization where applicable.
# We have avoided using a loop to construct the arrays for each randomization; instead we have 3 dimensional arrays, where the first dimension
# indexes the number of the random draw.
# Now build a final object which contains all the arrays together
######################################################################################################################################################################################
# Define remaining parameters
T0 = certainPARAMETERS["T0"][2]
T1 = certainPARAMETERS["T1"][2]
M0 = certainPARAMETERS["M0"][2]
M1 = certainPARAMETERS["M1"][2]
K0 = certainPARAMETERS["K0"][2]
R = certainPARAMETERS["R"][2]
# q = quintile distributions
q = dparam_i["q"]
# tol = minimum consumption
tol = dparam_i["tol"]
# d = damage distribution
d = zeros(nsample,5,12)
for i = 1:nsample
d[i,:,:] = elasticity2attribution(DEEPrandP.ee[i],q)
end
# Define para as the first four parameters in P - [rho, delta, eta, gamma]
para = [certainPARAMETERS["rho"][2],certainPARAMETERS["delta"][2],certainPARAMETERS["eta"][2],gamma]'
# To assist with coding elsewhere, now build an object, PP, that contains a P object for each random draw
PP = Array{PP_}(undef, nsample)
#Julia_0_6: PP = Array(PP_,nsample)
for i=1:nsample
PP[i] = PP_(para,L[i,:,:]',tfp[i,:,:]',sigma[i,:,:]',th1[i,:,:]',th2,pb[i,:,:]',EL',Fex,TrM[i,:,:],xi[i,:]',TrT[i,:,:],psi[i,:,:],T0,T1,M0,M1,K0,E0,R,q,d[i,:,:],tol)
# note the transposes so that the relevant matrices are now in TxI format for easy transfer to following functions/code
end
return PP
end