-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathBioAutoML-binary.py
798 lines (672 loc) · 29.1 KB
/
BioAutoML-binary.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
import warnings
warnings.filterwarnings(action='ignore', category=FutureWarning)
warnings.filterwarnings('ignore')
import pandas as pd
import numpy as np
import random
import argparse
import sys
import os.path
import time
import lightgbm as lgb
import joblib
# import shutil
import xgboost as xgb
from sklearn.metrics import roc_auc_score
from sklearn.model_selection import cross_val_predict
# from sklearn.metrics import multilabel_confusion_matrix
# from sklearn.model_selection import KFold
from catboost import CatBoostClassifier
from sklearn.metrics import balanced_accuracy_score
# from sklearn.pipeline import Pipeline
# from sklearn.preprocessing import MinMaxScaler
# from sklearn.model_selection import train_test_split
from sklearn.metrics import accuracy_score
from sklearn.model_selection import cross_validate
from sklearn.preprocessing import StandardScaler
from sklearn.ensemble import RandomForestClassifier
from sklearn.metrics import f1_score
from sklearn.metrics import precision_score
from sklearn.metrics import recall_score
from sklearn.metrics import matthews_corrcoef
from sklearn.feature_selection import SelectFromModel
from imblearn.over_sampling import SMOTE
from imblearn.under_sampling import RandomUnderSampler
from imblearn.under_sampling import NearMiss
from imblearn.under_sampling import EditedNearestNeighbours
from imblearn.under_sampling import CondensedNearestNeighbour
from imblearn.combine import SMOTEENN
from imblearn.combine import SMOTETomek
from imblearn.under_sampling import ClusterCentroids
from sklearn.model_selection import StratifiedKFold
from sklearn.metrics import cohen_kappa_score, make_scorer
from imblearn.metrics import geometric_mean_score
from imblearn.pipeline import Pipeline
from sklearn.impute import SimpleImputer
from sklearn.model_selection import cross_val_score
from hyperopt import hp, fmin, tpe, STATUS_OK, Trials
from sklearn.preprocessing import LabelEncoder
from tpot import TPOTClassifier
def header(output_header):
"""Header Function: Header of the evaluate_model_cross Function"""
file = open(output_header, 'a')
file.write('ACC,std_ACC,MCC,std_MCC,F1,std_F1,balanced_ACC,std_balanced_ACC,kappa,std_kappa,gmean,std_gmean')
file.write('\n')
return
def save_measures(output_measures, scores):
"""Save Measures Function: Output of the evaluate_model_cross Function"""
header(output_measures)
file = open(output_measures, 'a')
file.write('%0.4f,%0.2f,%0.4f,%0.2f,%0.4f,%0.2f,%0.4f,%0.2f,%0.4f,%0.2f,%0.4f,%0.2f' % (scores['test_ACC'].mean(),
+ scores['test_ACC'].std(), scores['test_MCC'].mean(), scores['test_MCC'].std(),
+ scores['test_f1'].mean(), scores['test_f1'].std(),
+ scores['test_ACC_B'].mean(), scores['test_ACC_B'].std(),
+ scores['test_kappa'].mean(), scores['test_kappa'].std(),
+ scores['test_gmean'].mean(), scores['test_gmean'].std()))
file.write('\n')
return
def evaluate_model_cross(X, y, model, output_cross, matrix_output):
"""Evaluation Function: Using Cross-Validation"""
scoring = {'ACC': 'accuracy', 'MCC': make_scorer(matthews_corrcoef), 'f1': 'f1',
'ACC_B': 'balanced_accuracy', 'kappa': make_scorer(cohen_kappa_score), 'gmean': make_scorer(geometric_mean_score)}
kfold = StratifiedKFold(n_splits=10, shuffle=True)
scores = cross_validate(model, X, LabelEncoder().fit_transform(y), cv=kfold, scoring=scoring)
save_measures(output_cross, scores)
y_pred = cross_val_predict(model, X, y, cv=kfold)
conf_mat = (pd.crosstab(y, y_pred, rownames=['REAL'], colnames=['PREDITO'], margins=True))
conf_mat.to_csv(matrix_output)
return
def tuning_rf_ga():
"""Tuning of classifier using Genetic Algorithm: Random Forest"""
n_estimators = [int(x) for x in np.linspace(start=200, stop=2000, num=50)]
max_features = ['auto', 'sqrt', 'log2', None]
criterion = ['gini', 'entropy']
max_depth = [int(x) for x in np.linspace(10, 300, num=50)]
min_samples_split = [int(x) for x in np.linspace(2, 10, num=8)]
min_samples_leaf = [int(x) for x in np.linspace(1, 10, num=9)]
bootstrap = [True, False]
rf_parameters = {'n_estimators': n_estimators, 'criterion': criterion, 'max_depth': max_depth,
'min_samples_split': min_samples_split, 'min_samples_leaf': min_samples_leaf,
'max_features': max_features, 'bootstrap': bootstrap}
kfold = StratifiedKFold(n_splits=5, shuffle=True)
tpot_tuning = TPOTClassifier(generations=20, population_size=10, offspring_size=4,
early_stop=12, config_dict={'sklearn.ensemble.RandomForestClassifier': rf_parameters},
cv=kfold, scoring=make_scorer(balanced_accuracy_score), n_jobs=n_cpu)
tpot_tuning.fit(train, train_labels)
return tpot_tuning
def objective_rf(space):
"""Tuning of classifier: Objective Function - Random Forest - Bayesian Optimization"""
model = RandomForestClassifier(n_estimators=int(space['n_estimators']),
criterion=space['criterion'],
max_depth=int(space['max_depth']),
max_features=space['max_features'],
min_samples_leaf=int(space['min_samples_leaf']),
min_samples_split=int(space['min_samples_split']),
random_state=63,
bootstrap=space['bootstrap'],
n_jobs=n_cpu)
kfold = StratifiedKFold(n_splits=5, shuffle=True)
balanced_accuracy = cross_val_score(model,
train,
train_labels,
cv=kfold,
scoring=make_scorer(balanced_accuracy_score),
n_jobs=n_cpu).mean()
return {'loss': -balanced_accuracy, 'status': STATUS_OK}
def tuning_rf_bayesian():
"""Tuning of classifier: Random Forest - Bayesian Optimization"""
param = {'criterion': ['entropy', 'gini'], 'max_features': ['auto', 'sqrt', 'log2', None], 'bootstrap': [True, False]}
space = {'criterion': hp.choice('criterion', ['entropy', 'gini']),
'n_estimators': hp.quniform('n_estimators', 100, 2000, 50),
'max_depth': hp.quniform('max_depth', 10, 100, 5),
'max_features': hp.choice('max_features', ['auto', 'sqrt', 'log2', None]),
'min_samples_leaf': hp.quniform('min_samples_leaf', 1, 10, 1),
'min_samples_split': hp.quniform('min_samples_split', 2, 10, 1),
'bootstrap': hp.choice('bootstrap', [True, False])}
trials = Trials()
best_tuning = fmin(fn=objective_rf,
space=space,
algo=tpe.suggest,
max_evals=100,
trials=trials)
best_rf = RandomForestClassifier(n_estimators=int(best_tuning['n_estimators']),
criterion=param['criterion'][best_tuning['criterion']],
max_depth=int(best_tuning['max_depth']),
max_features=param['max_features'][best_tuning['max_features']],
min_samples_leaf=int(best_tuning['min_samples_leaf']),
min_samples_split=int(best_tuning['min_samples_split']),
random_state=63,
bootstrap=param['bootstrap'][best_tuning['bootstrap']],
n_jobs=n_cpu)
return best_tuning, best_rf
def objective_cb(space):
"""Tuning of classifier: Objective Function - CatBoost - Bayesian Optimization"""
model = CatBoostClassifier(n_estimators=int(space['n_estimators']),
max_depth=int(space['max_depth']),
learning_rate=space['learning_rate'],
thread_count=n_cpu, nan_mode='Max', logging_level='Silent',
random_state=63)
kfold = StratifiedKFold(n_splits=5, shuffle=True)
balanced_accuracy = cross_val_score(model,
train,
train_labels,
cv=kfold,
scoring=make_scorer(balanced_accuracy_score),
n_jobs=n_cpu).mean()
return {'loss': -balanced_accuracy, 'status': STATUS_OK}
def tuning_catboost_bayesian():
"""Tuning of classifier: CatBoost - Bayesian Optimization"""
space = {'n_estimators': hp.quniform('n_estimators', 100, 2000, 50),
'learning_rate': hp.uniform('learning_rate', 0.01, 0.5),
'max_depth': hp.quniform('max_depth', 1, 16, 1),
# 'random_strength': hp.loguniform('random_strength', 1e-9, 10),
# 'bagging_temperature': hp.uniform('bagging_temperature', 0.0, 1.0),
# 'border_count': hp.quniform('border_count', 1, 255, 1),
# 'l2_leaf_reg': hp.quniform('l2_leaf_reg', 2, 30, 1),
# 'scale_pos_weight': hp.uniform('scale_pos_weight', 0.01, 1.0),
# 'bootstrap_type' = hp.choice('bootstrap_type', ['Bayesian', 'Bernoulli', 'MVS'])
}
trials = Trials()
best_tuning = fmin(fn=objective_cb,
space=space,
algo=tpe.suggest,
max_evals=100,
trials=trials)
best_cb = CatBoostClassifier(n_estimators=int(best_tuning['n_estimators']),
max_depth=int(best_tuning['max_depth']),
learning_rate=best_tuning['learning_rate'],
thread_count=n_cpu, nan_mode='Max', logging_level='Silent',
random_state=63)
return best_tuning, best_cb
def objective_lightgbm(space):
"""Tuning of classifier: Objective Function - Lightgbm - Bayesian Optimization"""
model = lgb.LGBMClassifier(n_estimators=int(space['n_estimators']),
max_depth=int(space['max_depth']),
num_leaves=int(space['num_leaves']),
learning_rate=space['learning_rate'],
subsample=space['subsample'],
n_jobs=n_cpu,
random_state=63)
kfold = StratifiedKFold(n_splits=5, shuffle=True)
balanced_accuracy = cross_val_score(model,
train,
train_labels,
cv=kfold,
scoring=make_scorer(balanced_accuracy_score),
n_jobs=n_cpu).mean()
return {'loss': -balanced_accuracy, 'status': STATUS_OK}
def tuning_lightgbm_bayesian():
"""Tuning of classifier: Lightgbm - Bayesian Optimization"""
space = {'n_estimators': hp.quniform('n_estimators', 100, 1000, 50),
'max_depth': hp.quniform('max_depth', 1, 30, 1),
'num_leaves': hp.quniform('num_leaves', 10, 200, 1),
'learning_rate': hp.uniform('learning_rate', 0.01, 0.5),
'subsample': hp.uniform('subsample', 0.1, 1.0)}
trials = Trials()
best_tuning = fmin(fn=objective_lightgbm,
space=space,
algo=tpe.suggest,
max_evals=100,
trials=trials)
best_cb = lgb.LGBMClassifier(n_estimators=int(best_tuning['n_estimators']),
max_depth=int(best_tuning['max_depth']),
num_leaves=int(best_tuning['num_leaves']),
learning_rate=best_tuning['learning_rate'],
subsample=best_tuning['subsample'],
n_jobs=n_cpu,
random_state=63)
return best_tuning, best_cb
def objective_feature_selection(space):
"""Feature Importance-based Feature selection: Objective Function - Bayesian Optimization"""
t = space['threshold']
fs = SelectFromModel(clf, threshold=t)
fs.fit(train, train_labels)
fs_train = fs.transform(train)
kfold = StratifiedKFold(n_splits=5, shuffle=True)
bacc = cross_val_score(clf,
fs_train,
train_labels,
cv=kfold,
scoring=make_scorer(balanced_accuracy_score),
n_jobs=n_cpu).mean()
return {'loss': -bacc, 'status': STATUS_OK}
def feature_importance_fs_bayesian(model, train, train_labels):
"""Feature Importance-based Feature selection using Bayesian Optimization"""
model.fit(train, train_labels)
importances = set(model.feature_importances_)
importances.remove(max(importances))
importances.remove(max(importances))
space = {'threshold': hp.uniform('threshold', min(importances), max(importances))}
trials = Trials()
best_threshold = fmin(fn=objective_feature_selection,
space=space,
algo=tpe.suggest,
max_evals=100,
trials=trials)
return best_threshold['threshold']
def feature_importance_fs(model, train, train_labels, column_train):
"""threshold: features that have an importance of more than ..."""
if len(column_train) > 100:
samples = round(int(len(column_train)) * 0.40)
else:
samples = round(int(len(column_train)) * 0.80)
model.fit(train, train_labels)
importances = set(model.feature_importances_)
threshold = random.sample(importances, samples)
best_t = 0
best_baac = 0
for t in threshold:
if t != max(importances):
fs = SelectFromModel(model, threshold=t)
fs.fit(train, train_labels)
fs_train = fs.transform(train)
kfold = StratifiedKFold(n_splits=5, shuffle=True)
bacc = cross_val_score(model,
fs_train,
train_labels,
cv=kfold,
scoring=make_scorer(balanced_accuracy_score),
n_jobs=n_cpu).mean()
if bacc > best_baac:
best_baac = bacc
best_t = t
elif bacc == best_baac and t > best_t:
best_t = t
else:
pass
else:
pass
return best_t, best_baac
def features_importance_ensembles(model, features, output_importances):
"""Generate feature importance values"""
file = open(output_importances, 'a')
importances = model.feature_importances_
indices = np.argsort(importances)[::-1]
names = [features[i] for i in indices]
for f in range(len(features)):
file.write('%d. Feature (%s): (%f)' % (f + 1, names[f], importances[indices[f]]))
file.write('\n')
# print('%d. %s: (%f)' % (f + 1, names[f], importances[indices[f]]))
return names
def imbalanced_techniques(model, tech, train, train_labels):
"""Testing imbalanced data techniques"""
sm = tech
pipe = Pipeline([('tech', sm), ('classifier', model)])
# train_new, train_labels_new = sm.fit_sample(train, train_labels)
kfold = StratifiedKFold(n_splits=5, shuffle=True)
acc = cross_val_score(pipe,
train,
train_labels,
cv=kfold,
scoring=make_scorer(balanced_accuracy_score),
n_jobs=n_cpu).mean()
return acc
def imbalanced_function(clf, train, train_labels):
"""Preprocessing: Imbalanced datasets"""
print('Checking for imbalanced labels...')
df = pd.DataFrame(train_labels)
n_labels = pd.value_counts(df.values.flatten())
if all(x == n_labels[0] for x in n_labels) is False:
print('There are imbalanced labels...')
print('Checking the best technique...')
performance = []
smote = imbalanced_techniques(clf, SMOTE(random_state=42), train, train_labels)
random = imbalanced_techniques(clf, RandomUnderSampler(random_state=42), train, train_labels)
hybrid_one = imbalanced_techniques(clf, SMOTEENN(random_state=42), train, train_labels)
hybrid_two = imbalanced_techniques(clf, SMOTETomek(random_state=42), train, train_labels)
cluster = imbalanced_techniques(clf, ClusterCentroids(random_state=42), train, train_labels)
near = imbalanced_techniques(clf, EditedNearestNeighbours(), train, train_labels)
near_miss = imbalanced_techniques(clf, NearMiss(), train, train_labels)
performance.append(smote)
performance.append(random)
performance.append(hybrid_one)
performance.append(hybrid_two)
performance.append(cluster)
performance.append(near)
performance.append(near_miss)
max_pos = performance.index(max(performance))
# print(performance)
# print(max_pos)
if max_pos == 0:
print('Applying Smote - Oversampling...')
sm = SMOTE(random_state=42)
train, train_labels = sm.fit_sample(train, train_labels)
elif max_pos == 1:
print('Applying Random - Undersampling...')
sm = RandomUnderSampler(random_state=42)
train, train_labels = sm.fit_sample(train, train_labels)
elif max_pos == 2:
print('Applying SMOTEENN - Hybrid...')
sm = SMOTEENN(random_state=42)
train, train_labels = sm.fit_sample(train, train_labels)
elif max_pos == 3:
print('Applying SMOTETomek - Hybrid...')
sm = SMOTETomek(random_state=42)
train, train_labels = sm.fit_sample(train, train_labels)
elif max_pos == 4:
print('Applying ClusterCentroids - Undersampling...')
sm = ClusterCentroids(random_state=42)
train, train_labels = sm.fit_sample(train, train_labels)
elif max_pos == 5:
print('Applying EditedNearestNeighbours - Undersampling...')
sm = EditedNearestNeighbours()
train, train_labels = sm.fit_sample(train, train_labels)
else:
print('Applying NearMiss - Undersampling...')
sm = NearMiss()
train, train_labels = sm.fit_sample(train, train_labels)
else:
print('There are no imbalanced labels...')
return train, train_labels
def save_prediction(prediction, nameseqs, pred_output):
"""Saving prediction - test set"""
file = open(pred_output, 'a')
if os.path.exists(nameseq_test) is True:
for i in range(len(prediction)):
file.write('%s,' % str(nameseqs[i]))
file.write('%s' % str(prediction[i]))
file.write('\n')
else:
for i in range(len(prediction)):
file.write('%s' % str(prediction[i]))
file.write('\n')
return
def binary_pipeline(test, test_labels, test_nameseq, norm, fs, classifier, tuning, output):
global clf, train, train_labels
if not os.path.exists(output):
os.mkdir(output)
train = train_read
train_labels = train_labels_read
column_train = train.columns
column_test = ''
output = output + '/'
# tmp = sys.stdout
# log_file = open(output + 'task.log', 'a')
# sys.stdout = log_file
"""Number of Samples and Features: Train and Test"""
print('Number of samples (train): ' + str(len(train)))
if os.path.exists(ftest) is True:
column_test = test.columns
print('Number of samples (test): ' + str(len(test)))
print('Number of features (train): ' + str(len(column_train)))
if os.path.exists(ftest_labels) is True:
print('Number of features (test): ' + str(len(column_test)))
"""Preprocessing: Missing Values"""
print('Checking missing values...')
missing = train.isnull().values.any()
inf = train.isin([np.inf, -np.inf]).values.any()
missing_test = False
inf_test = False
if os.path.exists(ftest) is True:
missing_test = test.isnull().values.any()
inf_test = test.isin([np.inf, -np.inf]).values.any()
if missing or inf or missing_test or inf_test:
print('There are missing values...')
print('Applying SimpleImputer - strategy (mean)...')
train.replace([np.inf, -np.inf], np.nan, inplace=True)
imp = SimpleImputer(missing_values=np.nan, strategy='mean')
train = pd.DataFrame(imp.fit_transform(train), columns=column_train)
if os.path.exists(ftest) is True:
test.replace([np.inf, -np.inf], np.nan, inplace=True)
test = pd.DataFrame(imp.transform(test), columns=column_test)
else:
pass
else:
print('There are no missing values...')
"""Preprocessing: StandardScaler()"""
if norm is True:
print('Applying StandardScaler()....')
sc = StandardScaler()
train = pd.DataFrame(sc.fit_transform(train), columns=column_train)
if os.path.exists(ftest) is True:
test = pd.DataFrame(sc.transform(test), columns=column_test)
else:
pass
"""Choosing Classifier """
print('Choosing Classifier...')
if classifier == 0:
if tuning is True:
print('Tuning: ' + str(tuning))
print('Classifier: CatBoost')
clf = CatBoostClassifier(n_estimators=500, thread_count=n_cpu, nan_mode='Max',
logging_level='Silent', random_state=63)
if imbalance_data is True:
train, train_labels = imbalanced_function(clf, train, train_labels)
best_tuning, clf = tuning_catboost_bayesian()
print('Finished Tuning')
else:
print('Tuning: ' + str(tuning))
print('Classifier: CatBoost')
clf = CatBoostClassifier(n_estimators=500, thread_count=n_cpu, nan_mode='Max',
logging_level='Silent', random_state=63)
if imbalance_data is True:
train, train_labels = imbalanced_function(clf, train, train_labels)
elif classifier == 1:
if tuning is True:
print('Tuning: ' + str(tuning))
print('Classifier: Random Forest')
clf = RandomForestClassifier(n_estimators=200, n_jobs=n_cpu, random_state=63)
if imbalance_data is True:
train, train_labels = imbalanced_function(clf, train, train_labels)
best_tuning, clf = tuning_rf_bayesian()
print('Finished Tuning')
else:
print('Tuning: ' + str(tuning))
print('Classifier: Random Forest')
clf = RandomForestClassifier(n_estimators=200, n_jobs=n_cpu, random_state=63)
if imbalance_data is True:
train, train_labels = imbalanced_function(clf, train, train_labels)
elif classifier == 2:
if tuning is True:
print('Tuning: ' + str(tuning))
print('Classifier: LightGBM')
clf = lgb.LGBMClassifier(n_estimators=500, n_jobs=n_cpu, random_state=63)
if imbalance_data is True:
train, train_labels = imbalanced_function(clf, train, train_labels)
best_tuning, clf = tuning_lightgbm_bayesian()
print('Finished Tuning')
else:
print('Tuning: ' + str(tuning))
print('Classifier: LightGBM')
clf = lgb.LGBMClassifier(n_estimators=500, n_jobs=n_cpu, random_state=63)
if imbalance_data is True:
train, train_labels = imbalanced_function(clf, train, train_labels)
elif classifier == 3:
if tuning is True:
print('Tuning: ' + str(tuning))
print('Classifier: XGBClassifier')
clf = xgb.XGBClassifier(eval_metric='mlogloss', random_state=63)
if imbalance_data is True:
train, train_labels = imbalanced_function(clf, train, train_labels)
print('Tuning not yet available for XGBClassifier.')
else:
print('Tuning: ' + str(tuning))
print('Classifier: XGBClassifier')
clf = xgb.XGBClassifier(eval_metric='mlogloss', random_state=63)
if imbalance_data is True:
train, train_labels = imbalanced_function(clf, train, train_labels)
else:
sys.exit('This classifier option does not exist - Try again')
"""Preprocessing: Feature Importance-Based Feature Selection"""
feature_name = column_train
if fs == 1:
print('Applying Feature Importance-Based Feature Selection...')
# best_t, best_baac = feature_importance_fs(clf, train, train_labels, column_train)
best_t = feature_importance_fs_bayesian(clf, train, train_labels)
fs = SelectFromModel(clf, threshold=best_t)
fs.fit(train, train_labels)
feature_idx = fs.get_support()
feature_name = column_train[feature_idx]
train = pd.DataFrame(fs.transform(train), columns=feature_name)
if os.path.exists(ftest) is True:
test = pd.DataFrame(fs.transform(test), columns=feature_name)
else:
pass
print('Best Feature Subset: ' + str(len(feature_name)))
print('Reduction: ' + str(len(column_train)-len(feature_name)) + ' features')
fs_train = output + 'best_feature_train.csv'
fs_test = output + 'best_feature_test.csv'
print('Saving dataset with selected feature subset - train: ' + fs_train)
train.to_csv(fs_train, index=False)
if os.path.exists(ftest) is True:
print('Saving dataset with selected feature subset - test: ' + fs_test)
test.to_csv(fs_test, index=False)
print('Feature Selection - Finished...')
"""Training - StratifiedKFold (cross-validation = 10)..."""
print('Training: StratifiedKFold (cross-validation = 10)...')
train_output = output + 'training_kfold(10)_metrics.csv'
matrix_output = output + 'training_confusion_matrix.csv'
model_output = output + 'trained_model.sav'
evaluate_model_cross(train, train_labels, clf, train_output, matrix_output)
clf.fit(train, train_labels)
joblib.dump(clf, model_output)
print('Saving results in ' + train_output + '...')
print('Saving confusion matrix in ' + matrix_output + '...')
print('Saving trained model in ' + model_output + '...')
print('Training: Finished...')
"""Generating Feature Importance - Selected feature subset..."""
print('Generating Feature Importance - Selected feature subset...')
importance_output = output + 'feature_importance.csv'
features_importance_ensembles(clf, feature_name, importance_output)
print('Saving results in ' + importance_output + '...')
"""Testing model..."""
if os.path.exists(ftest) is True:
print('Generating Performance Test...')
preds = clf.predict(test)
pred_output = output + 'test_predictions.csv'
print('Saving prediction in ' + pred_output + '...')
save_prediction(preds, test_nameseq, pred_output)
if os.path.exists(ftest_labels) is True:
print('Generating Metrics - Test set...')
labels = np.unique(test_labels)
accu = accuracy_score(test_labels, preds)
recall = recall_score(test_labels, preds, pos_label=labels[0])
precision = precision_score(test_labels, preds, pos_label=labels[0])
f1 = f1_score(test_labels, preds, pos_label=labels[0])
auc = roc_auc_score(test_labels, clf.predict_proba(test)[:, 1])
balanced = balanced_accuracy_score(test_labels, preds)
gmean = geometric_mean_score(test_labels, preds)
mcc = matthews_corrcoef(test_labels, preds)
matrix_test = (pd.crosstab(test_labels, preds, rownames=["REAL"], colnames=["PREDITO"], margins=True))
metrics_output = output + 'metrics_test.csv'
print('Saving Metrics - Test set: ' + metrics_output + '...')
file = open(metrics_output, 'a')
file.write('Metrics: Test Set')
file.write('\n')
file.write('Accuracy: %s' % accu)
file.write('\n')
file.write('Recall: %s' % recall)
file.write('\n')
file.write('Precision: %s' % precision)
file.write('\n')
file.write('F1: %s' % f1)
file.write('\n')
file.write('AUC: %s' % auc)
file.write('\n')
file.write('balanced ACC: %s' % balanced)
file.write('\n')
file.write('gmean: %s' % gmean)
file.write('\n')
file.write('MCC: %s' % mcc)
file.write('\n')
matrix_output_test = output + 'test_confusion_matrix.csv'
matrix_test.to_csv(matrix_output_test)
print('Saving confusion matrix in ' + matrix_output_test + '...')
print('Task completed - results generated in ' + output + '!')
else:
print('There are no test labels for evaluation, check parameters...')
# sys.stdout = tmp
# log_file.close()
else:
print('There are no test sequences for evaluation, check parameters...')
print('Task completed - results generated in ' + output + '!')
# sys.stdout = tmp
# log_file.close()
return
##########################################################################
##########################################################################
if __name__ == '__main__':
print('\n')
print('###################################################################################')
print('###################################################################################')
print('##################### BioAutoML - Binary #######################')
print('########## Author: Robson Parmezan Bonidia ###########')
print('########## WebPage: https://bonidia.github.io/website/ ###########')
print('###################################################################################')
print('###################################################################################')
print('\n')
parser = argparse.ArgumentParser()
parser.add_argument('-train', '--train', help='csv format file, e.g., train.csv')
parser.add_argument('-train_label', '--train_label', default='', help='csv format file, e.g., labels.csv')
parser.add_argument('-test', '--test', help='csv format file, e.g., train.csv')
parser.add_argument('-test_label', '--test_label', default='', help='csv format file, e.g., labels.csv')
parser.add_argument('-test_nameseq', '--test_nameseq', default='', help='csv with sequence names')
parser.add_argument('-nf', '--normalization', type=bool, default=False,
help='Normalization - Features (default = False)')
parser.add_argument('-fs', '--featureselection', default=1,
help='Feature Selection (default = True)')
parser.add_argument('-n_cpu', '--n_cpu', default=1, help='number of cpus - default = 1')
parser.add_argument('-classifier', '--classifier', default=0,
help='Classifier - 0: CatBoost, 1: Random Forest'
'2: LightGBM, 3: XGBoost')
parser.add_argument('-imbalance', '--imbalance', type=bool, default=False,
help='To deal with the imbalanced dataset problem - True = Yes, False = No, '
'default = False')
parser.add_argument('-tuning', '--tuning_classifier', type=bool, default=False,
help='Tuning Classifier - True = Yes, False = No, default = False')
parser.add_argument('-output', '--output', help='results directory, e.g., result/')
args = parser.parse_args()
ftrain = str(args.train)
ftrain_labels = str(args.train_label)
ftest = str(args.test)
ftest_labels = str(args.test_label)
nameseq_test = str(args.test_nameseq)
norm = args.normalization
fs = int(args.featureselection)
n_cpu = int(args.n_cpu)
classifier = int(args.classifier)
imbalance_data = args.imbalance
tuning = args.tuning_classifier
foutput = str(args.output)
start_time = time.time()
if os.path.exists(ftrain) is True:
train_read = pd.read_csv(ftrain)
print('Train - %s: Found File' % ftrain)
else:
print('Train - %s: File not exists' % ftrain)
sys.exit()
if os.path.exists(ftrain_labels) is True:
train_labels_read = pd.read_csv(ftrain_labels).values.ravel()
print('Train_labels - %s: Found File' % ftrain_labels)
else:
print('Train_labels - %s: File not exists' % ftrain_labels)
sys.exit()
test_read = ''
if ftest != '':
if os.path.exists(ftest) is True:
test_read = pd.read_csv(ftest)
print('Test - %s: Found File' % ftest)
else:
print('Test - %s: File not exists' % ftest)
sys.exit()
test_labels_read = ''
if ftest_labels != '':
if os.path.exists(ftest_labels) is True:
test_labels_read = pd.read_csv(ftest_labels).values.ravel()
print('Test_labels - %s: Found File' % ftest_labels)
else:
print('Test_labels - %s: File not exists' % ftest_labels)
sys.exit()
test_nameseq_read = ''
if nameseq_test != '':
if os.path.exists(nameseq_test) is True:
test_nameseq_read = pd.read_csv(nameseq_test).values.ravel()
print('Test_nameseq - %s: Found File' % nameseq_test)
else:
print('Test_nameseq - %s: File not exists' % nameseq_test)
sys.exit()
binary_pipeline(test_read, test_labels_read, test_nameseq_read, norm, fs, classifier, tuning, foutput)
cost = (time.time() - start_time)/60
print('Computation time - Pipeline: %s minutes' % cost)
##########################################################################
##########################################################################