forked from alessandro-zomparelli/tissue
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathutils.py
1049 lines (943 loc) · 36.1 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
# ##### BEGIN GPL LICENSE BLOCK #####
#
# This program is free software; you can redistribute it and/or
# modify it under the terms of the GNU General Public License
# as published by the Free Software Foundation; either version 2
# of the License, or (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program; if not, write to the Free Software Foundation,
# Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
#
# ##### END GPL LICENSE BLOCK #####
import bpy, bmesh
import threading
import numpy as np
import multiprocessing
from multiprocessing import Process, Pool
from mathutils import Vector
from math import *
try: from .numba_functions import numba_lerp2, numba_lerp2_4
except: pass
from . import config
# ------------------------------------------------------------------
# MATH
# ------------------------------------------------------------------
def lerp(a, b, t):
return a + (b - a) * t
def _lerp2(v1, v2, v3, v4, v):
v12 = v1.lerp(v2,v.x) # + (v2 - v1) * v.x
v34 = v3.lerp(v4,v.x) # + (v4 - v3) * v.x
return v12.lerp(v34, v.y)# + (v34 - v12) * v.y
def lerp2(v1, v2, v3, v4, v):
v12 = v1 + (v2 - v1) * v.x
v34 = v3 + (v4 - v3) * v.x
return v12 + (v34 - v12) * v.y
def lerp3(v1, v2, v3, v4, v):
loc = lerp2(v1.co, v2.co, v3.co, v4.co, v)
nor = lerp2(v1.normal, v2.normal, v3.normal, v4.normal, v)
nor.normalize()
return loc + nor * v.z
import sys
def np_lerp2(v00, v10, v01, v11, vx, vy):
if 'numba' in sys.modules and False:
if len(v00.shape) == 3:
co2 = numba_lerp2(v00, v10, v01, v11, vx, vy)
elif len(v00.shape) == 4:
co2 = numba_lerp2_4(v00, v10, v01, v11, vx, vy)
#except:
else:
co0 = v00 + (v10 - v00) * vx
co1 = v01 + (v11 - v01) * vx
co2 = co0 + (co1 - co0) * vy
return co2
def flatten_vector(vec, x, y):
"""
Find planar vector according to two axis.
:arg vec: Input vector.
:type vec: :class:'mathutils.Vector'
:arg x: First axis.
:type x: :class:'mathutils.Vector'
:arg y: Second axis.
:type y: :class:'mathutils.Vector'
:return: Projected 2D Vector.
:rtype: :class:'mathutils.Vector'
"""
vx = vec.project(x)
vy = vec.project(y)
mult = 1 if vx.dot(x) > 0 else -1
vx = mult*vx.length
mult = 1 if vy.dot(y) > 0 else -1
vy = mult*vy.length
return Vector((vx, vy))
def vector_rotation(vec):
"""
Find vector rotation according to X axis.
:arg vec: Input vector.
:type vec: :class:'mathutils.Vector'
:return: Angle in radians.
:rtype: float
"""
v0 = Vector((1,0))
ang = Vector.angle_signed(vec, v0)
if ang < 0: ang = 2*pi + ang
return ang
# ------------------------------------------------------------------
# SCENE
# ------------------------------------------------------------------
def set_animatable_fix_handler(self, context):
'''
Prevent Blender Crashes with handlers
'''
old_handlers = []
blender_handlers = bpy.app.handlers.render_init
for h in blender_handlers:
if "turn_off_animatable" in str(h):
old_handlers.append(h)
for h in old_handlers: blender_handlers.remove(h)
blender_handlers.append(turn_off_animatable)
return
def turn_off_animatable(scene):
'''
Prevent Blender Crashes with handlers
'''
for o in [o for o in bpy.data.objects if o.type == 'MESH']:
o.tissue_tessellate.bool_run = False
#if not o.reaction_diffusion_settings.bool_cache:
# o.reaction_diffusion_settings.run = False
#except: pass
return
# ------------------------------------------------------------------
# OBJECTS
# ------------------------------------------------------------------
def convert_object_to_mesh(ob, apply_modifiers=True, preserve_status=True):
try: ob.name
except: return None
if ob.type != 'MESH':
if not apply_modifiers:
mod_visibility = [m.show_viewport for m in ob.modifiers]
for m in ob.modifiers: m.show_viewport = False
#ob.modifiers.update()
#dg = bpy.context.evaluated_depsgraph_get()
#ob_eval = ob.evaluated_get(dg)
#me = bpy.data.meshes.new_from_object(ob_eval, preserve_all_data_layers=True, depsgraph=dg)
me = simple_to_mesh(ob)
new_ob = bpy.data.objects.new(ob.data.name, me)
new_ob.location, new_ob.matrix_world = ob.location, ob.matrix_world
if not apply_modifiers:
for m,vis in zip(ob.modifiers,mod_visibility): m.show_viewport = vis
else:
if apply_modifiers:
new_ob = ob.copy()
new_me = simple_to_mesh(ob)
new_ob.modifiers.clear()
new_ob.data = new_me
else:
new_ob = ob.copy()
new_ob.data = ob.data.copy()
new_ob.modifiers.clear()
bpy.context.collection.objects.link(new_ob)
if preserve_status:
new_ob.select_set(False)
else:
for o in bpy.context.view_layer.objects: o.select_set(False)
new_ob.select_set(True)
bpy.context.view_layer.objects.active = new_ob
return new_ob
def simple_to_mesh(ob, depsgraph=None):
'''
Convert object to mesh applying Modifiers and Shape Keys
'''
#global evaluatedDepsgraph
if depsgraph == None:
if config.evaluatedDepsgraph == None:
dg = bpy.context.evaluated_depsgraph_get()
else: dg = config.evaluatedDepsgraph
else:
dg = depsgraph
ob_eval = ob.evaluated_get(dg)
me = bpy.data.meshes.new_from_object(ob_eval, preserve_all_data_layers=True, depsgraph=dg)
me.calc_normals()
return me
def join_objects(objects, link_to_scene=True, make_active=False):
C = bpy.context
bm = bmesh.new()
materials = {}
faces_materials = []
if config.evaluatedDepsgraph == None:
dg = C.evaluated_depsgraph_get()
else: dg = config.evaluatedDepsgraph
for o in objects:
bm.from_object(o, dg)
# add object's material to the dictionary
for m in o.data.materials:
if m not in materials: materials[m] = len(materials)
for f in o.data.polygons:
index = f.material_index
mat = o.material_slots[index].material
new_index = materials[mat]
faces_materials.append(new_index)
bm.verts.ensure_lookup_table()
bm.edges.ensure_lookup_table()
bm.faces.ensure_lookup_table()
# assign new indexes
for index, f in zip(faces_materials, bm.faces): f.material_index = index
# create object
me = bpy.data.meshes.new('joined')
bm.to_mesh(me)
me.update()
ob = bpy.data.objects.new('joined', me)
if link_to_scene: C.collection.objects.link(ob)
# make active
if make_active:
for o in C.view_layer.objects: o.select_set(False)
ob.select_set(True)
C.view_layer.objects.active = ob
# add materials
for m in materials.keys(): ob.data.materials.append(m)
return ob
def array_mesh(ob, n):
'''
Return Mesh data adding and applying an array without offset
'''
arr = ob.modifiers.new('Repeat','ARRAY')
arr.relative_offset_displace[0] = 0
arr.count = n
ob.modifiers.update()
dg = bpy.context.evaluated_depsgraph_get()
me = simple_to_mesh(ob, depsgraph=dg)
ob.modifiers.remove(arr)
return me
def get_mesh_before_subs(ob):
not_allowed = ('FLUID_SIMULATION', 'ARRAY', 'BEVEL', 'BOOLEAN', 'BUILD',
'DECIMATE', 'EDGE_SPLIT', 'MASK', 'MIRROR', 'REMESH',
'SCREW', 'SOLIDIFY', 'TRIANGULATE', 'WIREFRAME', 'SKIN',
'EXPLODE', 'PARTICLE_INSTANCE', 'PARTICLE_SYSTEM', 'SMOKE')
subs = 0
hide_mods = []
mods_visibility = []
for m in ob.modifiers:
hide_mods.append(m)
mods_visibility.append(m.show_viewport)
if m.type in ('SUBSURF','MULTIRES'): subs = m.levels
elif m.type in not_allowed:
subs = 0
hide_mods = []
mods_visibility = []
for m in hide_mods: m.show_viewport = False
me = simple_to_mesh(ob)
for m, vis in zip(hide_mods,mods_visibility): m.show_viewport = vis
return me, subs
# ------------------------------------------------------------------
# MESH FUNCTIONS
# ------------------------------------------------------------------
def calc_verts_area(me):
n_verts = len(me.vertices)
n_faces = len(me.polygons)
vareas = np.zeros(n_verts)
vcount = np.zeros(n_verts)
parea = [0]*n_faces
pverts = [0]*n_faces*4
me.polygons.foreach_get('area', parea)
me.polygons.foreach_get('vertices', pverts)
parea = np.array(parea)
pverts = np.array(pverts).reshape((n_faces, 4))
for a, verts in zip(parea,pverts):
vareas[verts] += a
vcount[verts] += 1
return vareas / vcount
def calc_verts_area_bmesh(me):
bm = bmesh.new()
bm.from_mesh(me)
bm.verts.ensure_lookup_table()
verts_area = np.zeros(len(me.vertices))
for v in bm.verts:
area = 0
faces = v.link_faces
for f in faces:
area += f.calc_area()
verts_area[v.index] = area if area == 0 else area/len(faces)
bm.free()
return verts_area
import time
def get_patches(me_low, me_high, sides, subs, bool_selection, bool_material_id, material_id):
#start_time = time.time()
nv = len(me_low.vertices) # number of vertices
ne = len(me_low.edges) # number of edges
nf = len(me_low.polygons) # number of polygons
n = 2**subs + 1
nev = ne * n # number of vertices along the subdivided edges
nevi = nev - 2*ne # internal vertices along subdividede edges
n0 = 2**(subs-1) - 1
# filtered polygonal faces
poly_sides = np.array([len(p.vertices) for p in me_low.polygons])
mask = poly_sides == sides
if bool_material_id:
mask_material = [1]*nf
me_low.polygons.foreach_get('material_index',mask_material)
mask_material = np.array(mask_material) == material_id
mask = np.logical_and(mask,mask_material)
if bool_selection:
mask_selection = [True]*nf
me_low.polygons.foreach_get('select',mask_selection)
mask_selection = np.array(mask_selection)
mask = np.logical_and(mask,mask_selection)
polys = np.array(me_low.polygons)[mask]
mult = n0**2 + n0
ps = poly_sides * mult + 1
ps = np.insert(ps,0,nv + nevi, axis=0)[:-1]
ips = ps.cumsum()[mask] # incremental polygon sides
nf = len(polys)
# when subdivided quad faces follows a different pattern
if sides == 4:
n_patches = nf
else:
n_patches = nf*sides
if sides == 4:
patches = np.zeros((nf,n,n),dtype='int')
verts = [[vv for vv in p.vertices] for p in polys if len(p.vertices) == sides]
verts = np.array(verts).reshape((-1,sides))
# filling corners
patches[:,0,0] = verts[:,0]
patches[:,n-1,0] = verts[:,1]
patches[:,n-1,n-1] = verts[:,2]
patches[:,0,n-1] = verts[:,3]
if subs != 0:
shift_verts = np.roll(verts, -1, axis=1)[:,:,np.newaxis]
edge_keys = np.concatenate((shift_verts, verts[:,:,np.newaxis]), axis=2)
edge_keys.sort()
edge_verts = me_low.edge_keys # edges keys
edge_verts = np.array(edge_verts)
edges_index = np.zeros((ne,ne),dtype='int')
edges_index[edge_verts[:,0],edge_verts[:,1]] = np.arange(ne)
evi = np.arange(nevi) + nv
evi = evi.reshape(ne,n-2) # edges inner verts
straight = np.arange(n-2)+1
inverted = np.flip(straight)
inners = np.array([[j*(n-2)+i for j in range(n-2)] for i in range(n-2)])
ek1 = me_high.edge_keys # edges keys
ek1 = np.array(ek1) # edge keys highres
keys0 = ek1[np.arange(ne)*(n-1)] # first inner edge
keys1 = ek1[np.arange(ne)*(n-1)+n-2] # last inner edge
edges_dir = np.zeros((nev,nev), dtype='int')
edges_dir[keys0[:,0], keys0[:,1]] = 1
edges_dir[keys1[:,0], keys1[:,1]] = 1
pick_verts = np.array((inverted,straight))
patch_index = np.arange(nf)[:,np.newaxis,np.newaxis]
# edge 0
e0 = edge_keys[:,0] # get edge key (faces, 2)
edge_id = edges_index[e0[:,0],e0[:,1]] # edge index
edge_verts = evi[edge_id] # indexes of inner vertices
dir = edges_dir[verts[:,0], edge_verts[:,0]] # check correct direction
ids = pick_verts[dir][:,np.newaxis,:] # indexes order along the side
patches[patch_index,ids,0] = edge_verts[:,np.newaxis,:] # assign indexes
# edge 1
e0 = edge_keys[:,1] # get edge key (faces, 2)
edge_id = edges_index[e0[:,0],e0[:,1]] # edge index
edge_verts = evi[edge_id] # indexes of inner vertices
dir = edges_dir[verts[:,1], edge_verts[:,0]] # check correct direction
ids = pick_verts[dir][:,:,np.newaxis] # indexes order along the side
patches[patch_index,n-1,ids] = edge_verts[:,:,np.newaxis] # assign indexes
# edge 2
e0 = edge_keys[:,2] # get edge key (faces, 2)
edge_id = edges_index[e0[:,0],e0[:,1]] # edge index
edge_verts = evi[edge_id] # indexes of inner vertices
dir = edges_dir[verts[:,3], edge_verts[:,0]] # check correct direction
ids = pick_verts[dir][:,np.newaxis,:] # indexes order along the side
patches[patch_index,ids,n-1] = edge_verts[:,np.newaxis,:] # assign indexes
# edge 3
e0 = edge_keys[:,3] # get edge key (faces, 2)
edge_id = edges_index[e0[:,0],e0[:,1]] # edge index
edge_verts = evi[edge_id] # indexes of inner vertices
dir = edges_dir[verts[:,0], edge_verts[:,0]] # check correct direction
ids = pick_verts[dir][:,:,np.newaxis] # indexes order along the side
patches[patch_index,0,ids] = edge_verts[:,:,np.newaxis] # assign indexes
# fill inners
patches[:,1:-1,1:-1] = inners[np.newaxis,:,:] + ips[:,np.newaxis,np.newaxis]
#end_time = time.time()
#print('Tissue: Got Patches in {:.4f} sec'.format(end_time-start_time))
return patches, mask
def get_patches_(me_low, me_high, sides, subs):
start_time = time.time()
nv = len(me_low.vertices) # number of vertices
ne = len(me_low.edges) # number of edges
n = 2**subs + 1
nev = ne * n # number of vertices along the subdivided edges
nevi = nev - 2*ne # internal vertices along subdividede edges
# filtered polygonal faces
polys = [p for p in me_low.polygons if len(p.vertices)==sides]
n0 = 2**(subs-1) - 1
ps = [nv + nevi]
for p in me_low.polygons:
psides = len(p.vertices)
increment = psides * (n0**2 + n0) + 1
ps.append(increment)
ips = np.array(ps).cumsum() # incremental polygon sides
nf = len(polys)
# when subdivided quad faces follows a different pattern
if sides == 4:
n_patches = nf
else:
n_patches = nf*sides
ek = me_low.edge_keys # edges keys
ek1 = me_high.edge_keys # edges keys
evi = np.arange(nevi) + nv
evi = evi.reshape(ne,n-2) # edges verts
straight = np.arange(n-2)+1
inverted = np.flip(straight)
inners = np.array([[j*(n-2)+i for j in range(n-2)] for i in range(n-2)])
edges_dict = {e : e1 for e,e1 in zip(ek,evi)}
keys0 = [ek1[i*(n-1)] for i in range(len(ek))]
keys1 = [ek1[i*(n-1)+n-2] for i in range(len(ek))]
edges_straight = dict.fromkeys(keys0 + keys1, straight)
keys2 = [(k0[0],k1[1]) for k0,k1 in zip(keys0, keys1)]
keys3 = [(k1[0],k0[1]) for k0,k1 in zip(keys0, keys1)]
edges_inverted = dict.fromkeys(keys2 + keys3, inverted)
filter_edges = {**edges_straight, **edges_inverted}
if sides == 4:
patches = np.zeros((nf,n,n))
for count, p in enumerate(polys):
patch = patches[count]
pid = p.index
verts = p.vertices
# filling corners
patch[0,0] = verts[0]
patch[n-1,0] = verts[1]
patch[n-1,n-1] = verts[2]
patch[0,n-1] = verts[3]
if subs == 0: continue
edge_keys = p.edge_keys
# fill edges
e0 = edge_keys[0]
edge_verts = edges_dict[e0]
e1 = (verts[0], edge_verts[0])
ids = filter_edges[e1]
patch[ids,0] = edge_verts
e0 = edge_keys[1]
edge_verts = edges_dict[e0]
e1 = (verts[1], edge_verts[0])
ids = filter_edges[e1]
patch[n-1,ids] = evi[ek.index(e0)]
e0 = edge_keys[2]
edge_verts = edges_dict[e0]
e1 = (verts[3], edge_verts[0])
ids = filter_edges[e1]
patch[ids,n-1] = evi[ek.index(e0)]
e0 = edge_keys[3]
edge_verts = edges_dict[e0]
e1 = (verts[0], edge_verts[0])
ids = filter_edges[e1]
patch[0,ids] = evi[ek.index(e0)]
# fill inners
patch[1:-1,1:-1] = inners + ips[pid]
return patches.astype(dtype='int')
def get_vertices_numpy(mesh):
'''
Create a numpy array with the vertices of a given mesh
'''
n_verts = len(mesh.vertices)
verts = [0]*n_verts*3
mesh.vertices.foreach_get('co', verts)
verts = np.array(verts).reshape((n_verts,3))
return verts
def get_vertices_and_normals_numpy(mesh):
'''
Create two numpy arrays with the vertices and the normals of a given mesh
'''
n_verts = len(mesh.vertices)
verts = [0]*n_verts*3
normals = [0]*n_verts*3
mesh.vertices.foreach_get('co', verts)
mesh.vertices.foreach_get('normal', normals)
verts = np.array(verts).reshape((n_verts,3))
normals = np.array(normals).reshape((n_verts,3))
return verts, normals
def get_normals_numpy(mesh):
'''
Create a numpy array with the normals of a given mesh
'''
n_verts = len(mesh.vertices)
normals = [0]*n_verts*3
mesh.vertices.foreach_get('normal', normals)
normals = np.array(normals).reshape((n_verts,3))
return normals
def get_edges_numpy(mesh):
'''
Create a numpy array with the edges of a given mesh
'''
n_edges = len(mesh.edges)
edges = [0]*n_edges*2
mesh.edges.foreach_get('vertices', edges)
edges = np.array(edges).reshape((n_edges,2)).astype('int')
return edges
def get_edges_id_numpy(mesh):
n_edges = len(mesh.edges)
edges = [0]*n_edges*2
mesh.edges.foreach_get('vertices', edges)
edges = np.array(edges).reshape((n_edges,2))
indexes = np.arange(n_edges).reshape((n_edges,1))
edges = np.concatenate((edges,indexes), axis=1)
return edges
def get_vertices(mesh):
n_verts = len(mesh.vertices)
verts = [0]*n_verts*3
mesh.vertices.foreach_get('co', verts)
verts = np.array(verts).reshape((n_verts,3))
verts = [Vector(v) for v in verts]
return verts
def get_faces(mesh):
faces = [[v for v in f.vertices] for f in mesh.polygons]
return faces
def get_faces_numpy(mesh):
faces = [[v for v in f.vertices] for f in mesh.polygons]
return np.array(faces)
def get_faces_edges_numpy(mesh):
faces = [v.edge_keys for f in mesh.polygons]
return np.array(faces)
def find_curves(edges, n_verts):
verts_dict = {key:[] for key in range(n_verts)}
for e in edges:
verts_dict[e[0]].append(e[1])
verts_dict[e[1]].append(e[0])
curves = []
while True:
if len(verts_dict) == 0: break
# next starting point
v = list(verts_dict.keys())[0]
# neighbors
v01 = verts_dict[v]
if len(v01) == 0:
verts_dict.pop(v)
continue
curve = []
if len(v01) > 1: curve.append(v01[1]) # add neighbors
curve.append(v) # add starting point
curve.append(v01[0]) # add neighbors
verts_dict.pop(v)
# start building curve
while True:
#last_point = curve[-1]
#if last_point not in verts_dict: break
# try to change direction if needed
if curve[-1] in verts_dict: pass
elif curve[0] in verts_dict: curve.reverse()
else: break
# neighbors points
last_point = curve[-1]
v01 = verts_dict[last_point]
# curve end
if len(v01) == 1:
verts_dict.pop(last_point)
if curve[0] in verts_dict: continue
else: break
# chose next point
new_point = None
if v01[0] == curve[-2]: new_point = v01[1]
elif v01[1] == curve[-2]: new_point = v01[0]
#else: break
#if new_point != curve[1]:
curve.append(new_point)
verts_dict.pop(last_point)
if curve[0] == curve[-1]:
verts_dict.pop(new_point)
break
curves.append(curve)
return curves
def curve_from_points(points, name='Curve'):
curve = bpy.data.curves.new(name,'CURVE')
for c in points:
s = curve.splines.new('POLY')
s.points.add(len(c))
for i,p in enumerate(c): s.points[i].co = p.xyz + [1]
ob_curve = bpy.data.objects.new(name,curve)
return ob_curve
def curve_from_pydata(points, radii, indexes, name='Curve', skip_open=False, merge_distance=1, set_active=True, only_data=False):
curve = bpy.data.curves.new(name,'CURVE')
curve.dimensions = '3D'
use_rad = True
for c in indexes:
bool_cyclic = c[0] == c[-1]
if bool_cyclic: c.pop(-1)
# cleanup
pts = np.array([points[i] for i in c])
try:
rad = np.array([radii[i] for i in c])
except:
use_rad = False
rad = 1
if merge_distance > 0:
pts1 = np.roll(pts,1,axis=0)
dist = np.linalg.norm(pts1-pts, axis=1)
count = 0
n = len(dist)
mask = np.ones(n).astype('bool')
for i in range(n):
count += dist[i]
if count > merge_distance: count = 0
else: mask[i] = False
pts = pts[mask]
if use_rad: rad = rad[mask]
if skip_open and not bool_cyclic: continue
s = curve.splines.new('POLY')
n_pts = len(pts)
s.points.add(n_pts-1)
w = np.ones(n_pts).reshape((n_pts,1))
co = np.concatenate((pts,w),axis=1).reshape((n_pts*4))
s.points.foreach_set('co',co)
if use_rad: s.points.foreach_set('radius',rad)
s.use_cyclic_u = bool_cyclic
if only_data:
return curve
else:
ob_curve = bpy.data.objects.new(name,curve)
bpy.context.collection.objects.link(ob_curve)
if set_active:
bpy.context.view_layer.objects.active = ob_curve
return ob_curve
def update_curve_from_pydata(curve, points, radii, indexes, merge_distance=1):
curve.splines.clear()
use_rad = True
for ic, c in enumerate(indexes):
bool_cyclic = c[0] == c[-1]
if bool_cyclic: c.pop(-1)
# cleanup
pts = np.array([points[i] for i in c if i != None])
try:
rad = np.array([radii[i] for i in c if i != None])
except:
use_rad = False
rad = 1
if merge_distance > 0:
pts1 = np.roll(pts,1,axis=0)
dist = np.linalg.norm(pts1-pts, axis=1)
count = 0
n = len(dist)
mask = np.ones(n).astype('bool')
for i in range(n):
count += dist[i]
if count > merge_distance: count = 0
else: mask[i] = False
pts = pts[mask]
if use_rad: rad = rad[mask]
#if skip_open and not bool_cyclic: continue
s = curve.splines.new('POLY')
n_pts = len(pts)
s.points.add(n_pts-1)
w = np.ones(n_pts).reshape((n_pts,1))
co = np.concatenate((pts,w),axis=1).reshape((n_pts*4))
s.points.foreach_set('co',co)
if use_rad: s.points.foreach_set('radius',rad)
s.use_cyclic_u = bool_cyclic
def loops_from_bmesh(edges):
"""
Return one or more loops given some starting edges.
:arg edges: Edges used as seeds.
:type edges: List of :class:'bmesh.types.BMEdge'
:return: Elements in each loop (Verts, Edges), where:
- Verts - List of Lists of :class:'bmesh.types.BMVert'
- Edges - List of Lists of :class:'bmesh.types.BMEdge'
:rtype: tuple
"""
todo_edges = list(edges)
#todo_edges = [e.index for e in bm.edges]
vert_loops = []
edge_loops = []
while len(todo_edges) > 0:
edge = todo_edges[0]
vert_loop, edge_loop = run_edge_loop(edge)
for e in edge_loop:
try: todo_edges.remove(e)
except: pass
edge_loops.append(edge_loop)
vert_loops.append(vert_loop)
#if len(todo_edges) == 0: break
return vert_loops, edge_loops
def run_edge_loop_direction(edge,vert):
"""
Return vertices and edges along a loop in a specific direction.
:arg edge: Edges used as seed.
:type edges: :class:'bmesh.types.BMEdge'
:arg edge: Vertex of the Edge used for the direction.
:type vert: :class:'bmesh.types.BMVert'
:return: Elements in the loop (Verts, Edges), where:
- Verts - List of :class:'bmesh.types.BMVert'
- Edges - List of :class:'bmesh.types.BMEdge'
:rtype: tuple
"""
edge0 = edge
edge_loop = [edge]
vert_loop = [vert]
while True:
link_edges = list(vert.link_edges)
link_edges.remove(edge)
n_edges = len(link_edges)
if n_edges == 1:
edge = link_edges[0]
elif n_edges < 4:
link_faces = edge.link_faces
edge = None
for e in link_edges:
link_faces1 = e.link_faces
if len(link_faces) == len(link_faces1):
common_faces = [f for f in link_faces1 if f in link_faces]
if len(common_faces) == 0:
edge = e
break
else: break
if edge == None: break
edge_loop.append(edge)
vert = edge.other_vert(vert)
vert_loop.append(vert)
if edge == edge0: break
return vert_loop, edge_loop
def run_edge_loop(edge):
"""
Return vertices and edges along a loop in both directions.
:arg edge: Edges used as seed.
:type edges: :class:'bmesh.types.BMEdge'
:return: Elements in the loop (Verts, Edges), where:
- Verts - List of :class:'bmesh.types.BMVert'
- Edges - List of :class:'bmesh.types.BMEdge'
:rtype: tuple
"""
vert0 = edge.verts[0]
vert_loop0, edge_loop0 = run_edge_loop_direction(edge, vert0)
if len(edge_loop0) == 1 or edge_loop0[0] != edge_loop0[-1]:
vert1 = edge.verts[1]
vert_loop1, edge_loop1 = run_edge_loop_direction(edge, vert1)
edge_loop0.reverse()
vert_loop0.reverse()
edge_loop = edge_loop0[:-1] + edge_loop1
vert_loop = vert_loop0 + vert_loop1
else:
edge_loop = edge_loop0[1:]
vert_loop = vert_loop0
return vert_loop, edge_loop
def curve_from_vertices(indexes, verts, name='Curve'):
"""
Curve data from given vertices.
:arg indexes: List of Lists of indexes of the vertices.
:type indexes: List of Lists of int
:arg verts: List of vertices.
:type verts: List of :class:'bpy.types.MeshVertex'
:arg name: Name of the Curve data.
:type name: str
:return: Generated Curve data
:rtype: :class:'bpy.types.Curve'
"""
curve = bpy.data.curves.new(name,'CURVE')
for c in indexes:
s = curve.splines.new('POLY')
s.points.add(len(c))
for i,p in enumerate(c):
s.points[i].co = verts[p].co.xyz + [1]
#s.points[i].tilt = degrees(asin(verts[p].co.z))
ob_curve = bpy.data.objects.new(name,curve)
return ob_curve
def nurbs_from_vertices(indexes, co, radii=[], name='Curve', set_active=True, interpolation='POLY'):
curve = bpy.data.curves.new(name,'CURVE')
curve.dimensions = '3D'
curve.resolution_u = 2
curve.bevel_depth = 0.01
curve.bevel_resolution = 0
for pts in indexes:
s = curve.splines.new(interpolation)
n_pts = len(pts)
s.points.add(n_pts-1)
w = np.ones(n_pts).reshape((n_pts,1))
curve_co = np.concatenate((co[pts],w),axis=1).reshape((n_pts*4))
s.points.foreach_set('co',curve_co)
try:
s.points.foreach_set('radius',radii[pts])
except: pass
s.use_endpoint_u = True
ob_curve = bpy.data.objects.new(name,curve)
bpy.context.collection.objects.link(ob_curve)
if set_active:
bpy.context.view_layer.objects.active = ob_curve
ob_curve.select_set(True)
return ob_curve
# ------------------------------------------------------------------
# VERTEX GROUPS AND WEIGHT
# ------------------------------------------------------------------
def get_weight(vertex_group, n_verts):
"""
Read weight values from given Vertex Group.
:arg vertex_group: Vertex Group.
:type vertex_group: :class:'bpy.types.VertexGroup'
:arg n_verts: Number of Vertices (output list size).
:type n_verts: int
:return: Readed weight values.
:rtype: list
"""
weight = [0]*n_verts
for i in range(n_verts):
try: weight[i] = vertex_group.weight(i)
except: pass
return weight
def get_weight_numpy(vertex_group, n_verts):
"""
Read weight values from given Vertex Group.
:arg vertex_group: Vertex Group.
:type vertex_group: :class:'bpy.types.VertexGroup'
:arg n_verts: Number of Vertices (output list size).
:type n_verts: int
:return: Readed weight values as numpy array.
:rtype: :class:'numpy.ndarray'
"""
weight = [0]*n_verts
for i in range(n_verts):
try: weight[i] = vertex_group.weight(i)
except: pass
return np.array(weight)
def bmesh_get_weight_numpy(group_index, layer, verts):
weight = np.zeros(len(verts))
for i, v in enumerate(verts):
dvert = v[layer]
if group_index in dvert:
weight[i] = dvert[group_index]
#dvert[group_index] = 0.5
return weight
def bmesh_set_weight_numpy(group_index, layer, verts, weight):
for i, v in enumerate(verts):
dvert = v[layer]
if group_index in dvert:
dvert[group_index] = weight[i]
return verts
def bmesh_set_weight_numpy(bm, group_index, weight):
layer = bm.verts.layers.deform.verify()
for i, v in enumerate(bm.verts):
dvert = v[layer]
#if group_index in dvert:
dvert[group_index] = weight[i]
return bm
def get_uv_edge_vectors(me, uv_map = 0, only_positive=False):
count = 0
uv_vectors = {}
for i, f in enumerate(me.polygons):
f_verts = len(f.vertices)
for j0 in range(f_verts):
j1 = (j0+1)%f_verts
uv0 = me.uv_layers[uv_map].data[count+j0].uv
uv1 = me.uv_layers[uv_map].data[count+j1].uv
delta_uv = (uv1-uv0).normalized()
if only_positive:
delta_uv.x = abs(delta_uv.x)
delta_uv.y = abs(delta_uv.y)
edge_key = tuple(sorted([f.vertices[j0], f.vertices[j1]]))
uv_vectors[edge_key] = delta_uv
count += f_verts
uv_vectors = [uv_vectors[tuple(sorted(e.vertices))] for e in me.edges]
return uv_vectors
def mesh_diffusion(me, values, iter, diff=0.2, uv_dir=0):
values = np.array(values)
n_verts = len(me.vertices)
n_edges = len(me.edges)
edge_verts = [0]*n_edges*2
#me.edges.foreach_get("vertices", edge_verts)
count = 0
edge_verts = []
uv_factor = {}
uv_ang = (0.5 + uv_dir*0.5)*pi/2
uv_vec = Vector((cos(uv_ang), sin(uv_ang)))
for i, f in enumerate(me.polygons):
f_verts = len(f.vertices)
for j0 in range(f_verts):
j1 = (j0+1)%f_verts
if uv_dir != 0:
uv0 = me.uv_layers[0].data[count+j0].uv
uv1 = me.uv_layers[0].data[count+j1].uv
delta_uv = (uv1-uv0).normalized()
delta_uv.x = abs(delta_uv.x)
delta_uv.y = abs(delta_uv.y)
dir = uv_vec.dot(delta_uv)
else:
dir = 1
#dir = abs(dir)
#uv_factor.append(dir)
edge_key = [f.vertices[j0], f.vertices[j1]]
edge_key.sort()
uv_factor[tuple(edge_key)] = dir
count += f_verts
id0 = []
id1 = []
uv_mult = []
for ek, val in uv_factor.items():
id0.append(ek[0])
id1.append(ek[1])
uv_mult.append(val)
id0 = np.array(id0)
id1 = np.array(id1)
uv_mult = np.array(uv_mult)
#edge_verts = np.array(edge_verts)
#arr = np.arange(n_edges)*2
#id0 = edge_verts[arr] # first vertex indices for each edge
#id1 = edge_verts[arr+1] # second vertex indices for each edge
for ii in range(iter):
lap = np.zeros(n_verts)
if uv_dir != 0:
lap0 = (values[id1] - values[id0])*uv_mult # laplacian increment for first vertex of each edge
else:
lap0 = (values[id1] - values[id0])
np.add.at(lap, id0, lap0)
np.add.at(lap, id1, -lap0)
values += diff*lap
return values
def mesh_diffusion_vector(me, vectors, iter, diff, uv_dir=0):
vectors = np.array(vectors)
x = vectors[:,0]
y = vectors[:,1]
z = vectors[:,2]
x = mesh_diffusion(me, x, iter, diff, uv_dir)
y = mesh_diffusion(me, y, iter, diff, uv_dir)
z = mesh_diffusion(me, z, iter, diff, uv_dir)
vectors[:,0] = x
vectors[:,1] = y