-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathBinary_Search_Tree.cpp
203 lines (173 loc) · 4.34 KB
/
Binary_Search_Tree.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
/*
BST(Binary Search Tree) :- It is a special type of binary tree in which left subtree of a node has a value smaller
than that of root data and right subtree has value geater than that of root data .
It is followed at every node.
InOrder traversal of a BST is always sorted.
*/
#include <iostream>
#include<queue>
using namespace std;
class node{
public:
int data;
node*left;
node*right;
node(int d){
data = d;
left = NULL;
right = NULL;
}
};
//Accepts the old root node & data and returns the new root node
node* insertInBST(node *root,int data){
//Base Case
if(root==NULL){
return new node(data);
}
//Rec Case - Insert in the Subtree and Update Pointers
if(data<=root->data){
root->left = insertInBST(root->left,data);
}
else{
root->right = insertInBST(root->right,data);
}
return root;
}
node* build(){
//Read a list of numbers till -1 and also these numbers will be inserted into BST
int d;
cin>>d;
node*root = NULL;
while(d!=-1){
root = insertInBST(root,d);
cin>>d;
}
return root;
}
//Print the BST Level By Level
void bfs(node *root){
queue<node*> q;
q.push(root);
q.push(NULL);
while(!q.empty()){
node* f = q.front();
if(f==NULL){
cout<<endl;
q.pop();
if(!q.empty()){
q.push(NULL);
}
}
else{
cout<<f->data<<",";
q.pop();
if(f->left){
q.push(f->left);
}
if(f->right){
q.push(f->right);
}
}
}
return;
}
//Inorder Print
void inorder(node*root){
if(root==NULL){
return;
}
inorder(root->left);
cout<<root->data<<",";
inorder(root->right);
}
// Searching a data in BST
bool search(node *root,int data){
if(root==NULL){
return false;
}
if(root->data==data){
return true;
}
// Recursively call on left and right subtree
if(data<=root->data){
return search(root->left,data);
}else{
return search(root->right,data);
}
}
node* deleteInBST(node*root,int data){
if(root==NULL){
return NULL;
}
else if(data<root->data){
root->left = deleteInBST(root->left,data);
return root;
}
else if(data==root->data){
//Found the node to delete 3 Cases
//1. Node with 0 children - Leaf Node
if(root->left==NULL && root->right==NULL){
delete root;
return NULL;
}
//2. Case Only 1 child
if(root->left!=NULL && root->right==NULL){
node* temp = root->left;
delete root;
return temp;
}
if(root->right!=NULL && root->left==NULL){
node* temp = root->right;
delete root;
return temp;
}
//3. Case 2 children
node *replace = root->right;
//Find the inorder successor from right subtree
while(replace->left!=NULL){
replace = replace->left;
}
root->data = replace->data;
root->right = deleteInBST(root->right,replace->data);
return root;
}
else{
root->right = deleteInBST(root->right,data);
return root;
}
}
bool isBST(node *root,int minV = INT_MIN,int maxV = INT_MAX){
if(root==NULL){
return true;
}
if(root->data >= minV && root->data<=maxV && isBST(root->left,minV,root->data) && isBST(root->right,root->data,maxV)){
return true;
}
return false;
}
int main(){
node*root = build();
inorder(root);
cout<<endl;
bfs(root);
int val;
cin>>val;
if(search(root,val)){
cout<<"Present\n";
}else{
cout<<"Not Present\n";
}
int s;
cin>>s;
root = deleteInBST(root,s);
inorder(root);
cout<<endl;
bfs(root);
if(isBST(root)){
cout<<"Yes";
}
else{
cout<<"Not a BST!";
}
return 0;
}