-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathsanity_check.py
47 lines (41 loc) · 1.31 KB
/
sanity_check.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
import sys
from pathlib import Path
sys.path.append(str(Path(__file__).resolve().parent.parent))
import torch
import torchvision.models as models
import time
import argparse
import inspect
import ppuda.ema as ema
from ppuda.config import init_config
from ppuda.utils import infer, AvgrageMeter, adjust_net
from ppuda.vision.loader import image_loader
#from ghn3.nn2 import from_pretrained, get_metadata
from ghn3.nn import from_pretrained, get_metadata, GHN3_GPT
from ghn3.graph import Graph_GPT, GraphBatch
from ghn3.gpt2_1k import GPT2_1KDDP
#from ghn3 import from_pretrained, get_metadata, DeepNets1MDDP
from torchvision.models.vision_transformer import _vision_transformer
from transformers import AutoModelForCausalLM, AutoTokenizer
tokenizer = AutoTokenizer.from_pretrained("Meta-Llama-3-8B-hf")
model = AutoModelForCausalLM.from_pretrained("Meta-Llama-3-8B-hf")
device = 'cuda' if torch.cuda.is_available() else 'cpu'
LoGAH = GHN3_GPT(
max_shape=(2048, 2048, 16, 16),
num_classes=10,
hid=64,
heads=8,
layers=3,
is_ghn2=False,
pretrained=False,
lora=True,
lora_r=32,
max_ck_lora=int(16 * 2048),
use_1d_decoder=False,
).to(device)
LoGAH.eval()
graph = Graph_GPT(model, ve_cutoff=250, dense=True)
model = LoGAH(
model.to(device),
GraphBatch([graph], dense=True).to_device(device)
)