-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathoutput_data_to_csv.m
34 lines (31 loc) · 1.23 KB
/
output_data_to_csv.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
function output_data_to_csv(file_name, damage_size, num_damaged, trial_number, actual_labels, predicted_labels, class_scores, face_flag)
% handles printing everything to .csv file (full details, row for each input image, damage amount pair)
fd = fopen(file_name, 'a');
if face_flag
% class_scores is num_images x num_features
num_images = size(class_scores, 1);
for j = 1:num_images
fprintf(fd, '%d,%f,%f,%f,%d,%d,%d,', j, damage_size, num_damaged, trial_number);
for jj = 1:num_images
distance = norm(class_scores(j,:) - class_scores(jj,:));
fprintf(fd, '%f,', distance);
end
fprintf(fd,'\n');
end
else
indices = range(length(actual_labels));
for i = 1:length(actual_labels)
if actual_labels(i) - predicted_labels(i) == 0
is_wrong = 0;
else
is_wrong = 1;
end
fprintf(fd, '%d,%f,%f,%f,%d,%d,%d,', i, damage_size, num_damaged, trial_number, actual_labels(i), predicted_labels(i), is_wrong);
for j = 1:size(class_scores,2)
% loop over classes
fprintf(fd, '%f,', class_scores(i,j));
end
fprintf(fd,'\n');
end
end
fclose(fd);