-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtrain_curriculum_EPD_ddp.py
223 lines (181 loc) · 8.99 KB
/
train_curriculum_EPD_ddp.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
import numpy as np
import torch
import torch.nn as nn
import torch.distributed as dist
from torch.nn.parallel import DistributedDataParallel as DDP
import os
from time import time
import wandb
from dynamics_training_loop import configure_epd_models, configure_val_dataset, configure_train_dataset_and_loader, \
epd_train_step, epd_train_step_with_checkpoint, prepare_training, validate_loop, to_device, \
configure_loss, configure_optimizers, dump_state, parse_args_and_config, configure_residual_stat
from utils.steps_scheduler import CurriculumSampler
import gc
from datetime import timedelta
def main(args, config):
# this train loop uses a curriculum schedule of rollout steps
# according the the curriculum, the rollout steps will be increased
assert torch.cuda.is_available(), "Training currently requires at least one GPU."
# retrieve specified gpu id from config
torch.backends.cudnn.deterministic = True
torch.set_float32_matmul_precision('high')
torch.backends.cuda.matmul.allow_tf32 = True
torch.backends.cudnn.allow_tf32 = True
os.environ['NCCL_BLOCKING_WAIT'] = '0'
# Setup DDP:
dist.init_process_group("nccl", timeout=timedelta(seconds=7200000),)
rank = dist.get_rank()
# visible_devices = os.environ['CUDA_VISIBLE_DEVICES']
# print(f"Visible devices: {visible_devices}")
device = rank % torch.cuda.device_count()
seed = args.global_seed * dist.get_world_size() + rank
torch.manual_seed(seed)
torch.cuda.set_device(device)
# print free memory on this device
# free_memory = torch.cuda.get_device_properties(device).total_memory - torch.cuda.memory_reserved(device)
print(f"Starting rank={rank}, seed={seed}, world_size={dist.get_world_size()}.")
# prepare wandb logging
if rank == 0:
wandb.init(project=config.project_name,
config=config)
logger, log_dir = prepare_training(args, config)
model = configure_epd_models(config) # train from scratch
model.to(torch.device(device))
# use the standard linear warmup + cosine annealing schedule
optim, sched = configure_optimizers(config, model)
# optionally resume from checkpoint
global_step = 0
if config.training.resume_from_checkpoint:
# currently only resume model state
checkpoint = torch.load(config.training.resume_checkpoint_path, map_location=torch.device(device))
model.load_state_dict(checkpoint['model'])
optim.load_state_dict(checkpoint['optimizer'])
sched.load_state_dict(checkpoint['scheduler'])
global_step = checkpoint['global_step']
if rank == 0:
print(f"Resumed from checkpoint at global step {checkpoint['global_step']}.")
torch.cuda.empty_cache()
model_ddp = DDP(model, device_ids=[rank])
# compile model, usually much faster
# torch._dynamo.config.optimize_ddp = False # this prevents error in some cases and in fact does not slow down the process
if config.training.use_compile: # currently does not work with gradient checkpointing
model_ddp_cpd = torch.compile(model_ddp)
else:
model_ddp_cpd = model_ddp
if rank == 0:
print('Building datasets...')
# construct curriculum sampler
curriculum_scheduler = CurriculumSampler(
values=config.training.curriculum_values,
milestone=config.training.curriculum_milestone
)
train_dataset, train_dataloader =\
configure_train_dataset_and_loader(config.training.curriculum_values[0]+1,
config.training.init_batch_size,
config)
residual_normalizer = configure_residual_stat(config)
# to device
residual_normalizer = residual_normalizer.to(device)
# only load valid data on rank 0
if rank == 0:
valsteps = config.data.valsteps
val_dataset = configure_val_dataset(valsteps, config)
else:
val_dataset = None
training_iter = iter(train_dataloader)
max_steps = config.training.max_steps
if rank == 0:
logger.info(f"max_steps: {max_steps}")
logger.info("Starting training loop...")
# construct loss function
training_loss_module = configure_loss(config)
training_loss_module.to(device)
grad_post_proc = lambda x: nn.utils.clip_grad_norm_(model_ddp_cpd.parameters(),
config.training.max_grad_norm)
start_time = time()
while global_step < max_steps:
rollout_steps, has_changed = curriculum_scheduler.get_value(global_step)
if has_changed: # reconstruct the dataloader
del train_dataloader, train_dataset
# garbage collection
torch.cuda.empty_cache()
gc.collect()
train_dataset, train_dataloader = configure_train_dataset_and_loader(rollout_steps+1,
config.training.final_batch_size,
config)
# if compile, re-compile the model to account for batch size change
if config.training.use_compile and \
config.training.init_batch_size != config.training.final_batch_size:
model_ddp_cpd = torch.compile(model_ddp) # re-compile
training_iter = iter(train_dataloader)
if rank == 0:
logger.info(f"Rollout steps changed to {rollout_steps} at global step {global_step}.")
try:
batch = next(training_iter)
except StopIteration:
training_iter = iter(train_dataloader)
batch = next(training_iter)
# retrieve things from batch
batch = to_device(batch, device)
surface_in_feat, surface_target_feat, multi_level_in_feat, multi_level_target_feat, constants = batch
if rollout_steps > config.training.gradient_checkpointing_segment_size:
loss = \
epd_train_step_with_checkpoint(model_ddp_cpd, surface_in_feat, surface_target_feat,
multi_level_in_feat, multi_level_target_feat,
constants,
optim, sched, training_loss_module, grad_post_proc,
residual_normalizer,
config.training.gradient_checkpointing_segment_size)
else:
loss = \
epd_train_step(model_ddp_cpd, surface_in_feat, surface_target_feat,
multi_level_in_feat, multi_level_target_feat,
constants,
optim, sched, training_loss_module,
grad_post_proc,
residual_normalizer)
if global_step % config.training.ckpt_every == 0:
# only do this on rank zero
if rank == 0:
dump_state(model_ddp, optim, sched, global_step, log_dir)
dist.barrier()
if global_step % config.training.validate_every == 0:
# only do this on rank zero
if rank == 0:
validate_loop(model_ddp.module, config.data.val_timestamps,
logger, global_step, val_dataset,
config.training.val_batch_size, config, device)
gc.collect()
dist.barrier()
global_step += 1
if rank == 0:
if global_step % config.training.print_every == 0:
torch.cuda.synchronize()
end_time = time()
steps_per_sec = config.training.print_every / (end_time - start_time)
print(
f' Step: {global_step}'
f' Pred Loss: {np.round(loss, 4)}' # this loss is not averaged across ranks
f' LR: {np.round(optim.param_groups[0]["lr"], 6)}'
f' Steps/sec: {np.round(steps_per_sec, 3)}'
f' ETA: {np.round((max_steps - global_step) / steps_per_sec / 3600, 3)}h'
f' Rollout steps: {rollout_steps}'
)
start_time = time()
wandb.log({
'loss': loss, # to match with previous experiments
'lr': optim.param_groups[0]['lr'],
'rollout_steps': rollout_steps
})
if rank == 0:
dump_state(model_ddp, optim, sched, global_step, log_dir)
validate_loop(model_ddp.module, config.data.val_timestamps,
logger, global_step, val_dataset,
config.training.val_batch_size, config, device)
dist.barrier()
logger.info('Training finished...')
wandb.finish()
dist.destroy_process_group()
if __name__ == "__main__":
args, config = parse_args_and_config()
main(args, config)