-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathdynamics_training_loop.py
566 lines (467 loc) · 22.7 KB
/
dynamics_training_loop.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
import numpy as np
from tqdm import tqdm
import argparse
import torch
import torch.nn as nn
from torch.utils.data import DataLoader
from einops import rearrange, repeat, reduce
import os
import logging, pickle
import yaml, shutil
import wandb
from matplotlib import pyplot as plt
from utils.lr_scheduler import LinearWarmupCosineAnnealingLR
from utils.training_utils import ensure_dir, save_checkpoint, load_checkpoint, \
dict2namespace
from utils.loss_utils import WeightedLoss, latitude_weighted_rmse, apply_loss_fn_to_dict
from utils.training_utils import plot_result_2d
from weather_transformer import CaFAEPD
from dataset.era5_iter import ERA5Reader, WeatherForecastData, ERA5EvalReader
from dataset.era5 import ResidualNormalizer
from torch.utils.data import DataLoader
import torch.distributed as dist
from torch.utils.checkpoint import checkpoint
import copy
# dataparallel
from torch.nn.parallel import DataParallel
def prepare_training(args, config):
log_dir = config.log_dir
# prepare the logger
# ensure the directory to save the model
# first check if the log directory exists
if not torch.distributed.is_initialized() or dist.get_rank() == 0: # real logger
ensure_dir(log_dir)
ensure_dir(log_dir + '/model')
ensure_dir(log_dir + '/code_cache')
ensure_dir(log_dir + '/images')
logger = logging.getLogger("LOG")
logger.setLevel(logging.INFO)
formatter = logging.Formatter('%(asctime)s - %(name)s - %(levelname)s - %(message)s')
file_handler = logging.FileHandler('%s/%s.txt' % (log_dir, 'logging_info'))
file_handler.setLevel(logging.INFO)
file_handler.setFormatter(formatter)
logger.addHandler(file_handler)
# copy config yaml file to log_dir
shutil.copyfile(args.config, os.path.join(log_dir, 'config.yml'))
# copy all the code to code_cache folder, including current training script
shutil.copytree('libs/', os.path.join(log_dir, 'code_cache', 'libs'), dirs_exist_ok=True)
shutil.copytree('dataset/', os.path.join(log_dir, 'code_cache', 'dataset'), dirs_exist_ok=True)
shutil.copytree('utils/', os.path.join(log_dir, 'code_cache', 'utils'), dirs_exist_ok=True)
shutil.copyfile('weather_transformer.py', os.path.join(log_dir, 'code_cache', 'weather_transformer.py'))
shutil.copyfile('dynamics_training_loop.py', os.path.join(log_dir, 'code_cache', 'dynamics_training_loop.py'))
shutil.copyfile('train_curriculum_EPD_ddp.py', os.path.join(log_dir, 'code_cache', 'train_curriculum_EPD_ddp.py'))
else: # dummy logger (does nothing)
logger = logging.getLogger("LOG")
logger.addHandler(logging.NullHandler())
return logger, log_dir
def configure_epd_models(config):
model = CaFAEPD(config)
return model
def configure_optimizers(config, model):
decay = []
no_decay = []
for name, m in model.named_parameters():
if "spherical_pe" or 'Basis' in name:
no_decay.append(m)
else:
decay.append(m)
optimizer = torch.optim.AdamW(
[
{
"params": decay,
"lr": config.training.lr,
"betas": (config.training.beta_1, config.training.beta_2),
"weight_decay": config.training.weight_decay,
},
{
"params": no_decay,
"lr": config.training.lr,
"betas": (config.training.beta_1, config.training.beta_2),
"weight_decay": 0,
},
]
)
scheduler = LinearWarmupCosineAnnealingLR(
optimizer,
config.training.warmup_steps,
config.training.max_steps,
config.training.warmup_start_lr,
config.training.eta_min,
)
return optimizer, scheduler
def configure_residual_stat(config):
# open pre-computed residual scaling factor
variable_groups = config.data.variable_groups
feature_names = [item for sublist in variable_groups for item in sublist]
variable_levels = config.data.variable_levels
surface_residual_scaling = []
multi_level_residual_scaling = []
surface_residual_bias = []
multi_level_residual_bias = []
with np.load(os.path.join(config.data.data_dir, 'residual_norm_stats.npz'), allow_pickle=True) as f:
data_std = f['residual_std'].item()
for i, feat_name in enumerate(feature_names):
if variable_levels[i] == 13:
multi_level_residual_scaling.append(data_std[feat_name].reshape(-1, 1))
multi_level_residual_bias.append(data_std[feat_name].reshape(-1, 1))
else:
surface_residual_scaling.append(data_std[feat_name])
surface_residual_bias.append(data_std[feat_name])
surface_residual_scaling = np.array(surface_residual_scaling) # [c]
multi_level_residual_scaling = np.concatenate(multi_level_residual_scaling, axis=-1) # [nlevels, c]
surface_residual_scaling = torch.tensor(surface_residual_scaling).float()
multi_level_residual_scaling = torch.tensor(multi_level_residual_scaling).float()
surface_residual_bias = np.array(surface_residual_bias) # [c]
multi_level_residual_bias = np.concatenate(multi_level_residual_bias, axis=-1) # [nlevels, c]
surface_residual_bias = torch.tensor(surface_residual_bias).float()
multi_level_residual_bias = torch.tensor(multi_level_residual_bias).float()
residual_normalizer = ResidualNormalizer(surface_residual_bias, surface_residual_scaling,
multi_level_residual_bias, multi_level_residual_scaling)
return residual_normalizer
# if dist.get_rank() == 0:
# print('Surface residual scaling:', surface_residual_scaling.shape)
# print('Multi-level residual scaling:', multi_level_residual_scaling.shape)
def configure_val_dataset(valsteps, config):
data_dir = config.data.data_dir
interval = config.data.interval
variable_groups = config.data.variable_groups
# flatten the variable groups
feature_names = [item for sublist in variable_groups for item in sublist]
constant_names = config.data.constant_names
variable_levels = config.data.variable_levels
val_dataset = WeatherForecastData(
ERA5Reader(data_dir, feature_names, constant_names, variable_levels,
'valid', '0/12', interval, valsteps))
return val_dataset
def configure_train_dataset_and_loader(trainsteps, batch_size, config):
data_dir = config.data.data_dir
interval = config.data.interval
variable_groups = config.data.variable_groups
# flatten the variable groups
feature_names = [item for sublist in variable_groups for item in sublist]
constant_names = config.data.constant_names
variable_levels = config.data.variable_levels
# get tining year range
years_range = config.data.years_range
train_dataset = WeatherForecastData(
ERA5Reader(data_dir, feature_names, constant_names, variable_levels,
'train', 'all', interval, trainsteps,
years_range=years_range,
shuffle=True))
if dist.is_initialized():
train_dataloader = DataLoader(train_dataset,
batch_size=int(batch_size // dist.get_world_size()),
num_workers=config.training.train_num_workers,
shuffle=False,
# sampler=sampler,
pin_memory=True, drop_last=True)
else:
train_dataloader = DataLoader(train_dataset,
batch_size=batch_size,
num_workers=config.training.train_num_workers,
shuffle=False,
pin_memory=True, drop_last=True)
return train_dataset, train_dataloader
def configure_test_dataset(config, teststeps):
data_dir = config.data.data_dir
interval = config.data.interval
variable_groups = config.data.variable_groups
# flatten the variable groups
feature_names = [item for sublist in variable_groups for item in sublist]
constant_names = config.data.constant_names
variable_levels = config.data.variable_levels
start_time_limit_years = config.data.start_time_limit_years
init_time = config.testing.init_time
val_dataset = WeatherForecastData(
ERA5EvalReader(data_dir, feature_names, constant_names, variable_levels,
init_time, interval, teststeps, start_time_limit_years=start_time_limit_years))
return val_dataset
def configure_loss(config):
loss_module = WeightedLoss(loss_fn=nn.SmoothL1Loss(beta=config.training.smooth_l1_beta, reduction='none'),
latitude_resolution=config.data.nlat,
level_weight=config.training.level_weight,
multi_level_variable_weight=config.data.multi_level_variable_weight,
surface_variable_weight=config.data.surface_variable_weight)
return loss_module
def dump_state(model, optimizer, scheduler, global_step, log_dir, ema=False):
if not ema:
state_dict = {
'model': model.module.state_dict(),
'optimizer': optimizer.state_dict(),
'scheduler': scheduler.state_dict(),
'global_step': global_step,
}
save_checkpoint(state_dict, log_dir + '/model' + f'/model_{(global_step // 1000)}k_iter.pth')
else:
state_dict = {
'model': model.state_dict(), # this is a ema model
}
save_checkpoint(state_dict, log_dir + '/model' + f'/ema_{(global_step // 1000)}k_iter.pth')
def load_state(model, checkpoint, config):
model.load_state_dict(checkpoint['model'])
optim, sched = configure_optimizers(config, model)
optim.load_state_dict(checkpoint['optimizer'])
sched.load_state_dict(checkpoint['scheduler'])
global_step = checkpoint['global_step']
return optim, sched, global_step
def to_device(data, device):
if isinstance(data, (list, tuple)):
return [to_device(x, device) for x in data]
return data.to(device, non_blocking=True)
def epd_train_step(model,
surface_in_feat,
surface_target_feat,
multi_level_in_feat,
multi_level_target_feat,
constants,
optimizer,
scheduler,
loss_module,
grad_post_fn,
residual_normalizer
):
model.train()
optimizer.zero_grad()
# train the autoencoder + processor for dynamics prediction
out_T = surface_target_feat.shape[1]
pred_surface_feat = torch.zeros_like(surface_target_feat)
pred_multi_level_feat = torch.zeros_like(multi_level_target_feat)
for step in range(out_T):
pred_surface_residual_t, pred_multi_level_residual_t = model(surface_in_feat,
multi_level_in_feat,
constants)
pred_surface_residual_t, pred_multi_level_residual_t = \
residual_normalizer.scale_and_offset(pred_surface_residual_t, pred_multi_level_residual_t)
pred_surface_feat_t = surface_in_feat + pred_surface_residual_t
pred_multi_level_feat_t = multi_level_in_feat + pred_multi_level_residual_t
pred_surface_feat[:, step] = pred_surface_feat_t
pred_multi_level_feat[:, step] = pred_multi_level_feat_t
surface_in_feat = pred_surface_feat_t
multi_level_in_feat = pred_multi_level_feat_t
loss = loss_module(pred_surface_feat, surface_target_feat, pred_multi_level_feat, multi_level_target_feat)
loss.backward()
# clip gradients
grad_post_fn(model)
optimizer.step()
scheduler.step()
return loss.detach().item()
def epd_train_step_with_checkpoint(model,
surface_in_feat,
surface_target_feat,
multi_level_in_feat,
multi_level_target_feat,
constants,
optimizer,
scheduler,
loss_module,
grad_post_fn,
residual_normalizer,
segment_size, # for gradient checkpointing
):
model.train()
optimizer.zero_grad()
out_T = surface_target_feat.shape[1] # total rollout steps
assert out_T > segment_size, 'segment size should be smaller than the total rollout steps'
# train the autoencoder + processor for dynamics prediction
# define custom forward
def run_function(start, end, constants):
outputs = []
def custom_forward(*inputs):
for step in range(start, end):
pred_surface_residual, pred_multi_level_residual = model(inputs[0],
inputs[1],
constants)
pred_surface_residual_t, pred_multi_level_residual_t = \
residual_normalizer.scale_and_offset(pred_surface_residual, pred_multi_level_residual)
pred_surface_feat_t = inputs[0] + pred_surface_residual_t
pred_multi_level_feat_t = inputs[1] + pred_multi_level_residual_t
outputs.append((pred_surface_feat_t, pred_multi_level_feat_t))
inputs = (pred_surface_feat_t, pred_multi_level_feat_t)
return outputs
return custom_forward
segments = out_T // segment_size
if out_T % segment_size > 0:
segments += 1
pred_lst = []
for i in range(segments):
start = i * segment_size
end = min((i + 1) * segment_size, out_T)
outputs = checkpoint(run_function(start, end, constants), surface_in_feat, multi_level_in_feat, use_reentrant=False)
pred_lst.extend(outputs)
surface_in_feat = outputs[-1][0]
multi_level_in_feat = outputs[-1][1]
pred_surface_feat = torch.stack([x[0] for x in pred_lst], dim=1)
pred_multi_level_feat = torch.stack([x[1] for x in pred_lst], dim=1)
loss = loss_module(pred_surface_feat, surface_target_feat, pred_multi_level_feat, multi_level_target_feat)
loss.backward()
# clip gradients
grad_post_fn(model)
optimizer.step()
scheduler.step()
return loss.detach().item()
def epd_predict(model,
timestamps,
in_feat_dict,
out_feat_dict,
constants,
normalizer,
residual_normalizer,
loss_fn,
config,
device,
return_pred=False):
model.eval()
# to device
surface_in_feat = []
multi_level_in_feat = []
# prepare input into surface and multi-level features
variable_levels = config.data.variable_levels
normalizer.normalize(in_feat_dict)
for i, key in enumerate(in_feat_dict.keys()):
v = in_feat_dict[key]
if variable_levels[i] == 1:
surface_in_feat.append(v)
elif variable_levels[i] > 1:
multi_level_in_feat.append(v)
surface_in_feat = torch.stack(surface_in_feat, dim=-1).to(device)
multi_level_in_feat = torch.stack(multi_level_in_feat, dim=-1).to(device)
constants = constants.to(device)
out_T = out_feat_dict[list(out_feat_dict.keys())[0]].shape[1]
batch_size, nlat, nlon, c_surface = surface_in_feat.shape
batch_size, nlat, nlon, nlevels, c_multi_level = multi_level_in_feat.shape
pred_surface_feat = torch.zeros((batch_size, len(timestamps), nlat, nlon, c_surface)).to(device)
pred_multi_level_feat = torch.zeros((batch_size, len(timestamps), nlat, nlon, nlevels, c_multi_level)).to(device)
max_timestamp = max(timestamps)
with torch.inference_mode():
for step in range(max_timestamp):
pred_surface_residual_t, pred_multi_level_residual_t = model(surface_in_feat,
multi_level_in_feat,
constants)
pred_surface_residual_t, pred_multi_level_residual_t = \
residual_normalizer.scale_and_offset(pred_surface_residual_t, pred_multi_level_residual_t)
pred_surface_feat_t = surface_in_feat + pred_surface_residual_t
pred_multi_level_feat_t = multi_level_in_feat + pred_multi_level_residual_t
if step+1 in timestamps:
pred_surface_feat[:, timestamps.index(step+1)] = pred_surface_feat_t
pred_multi_level_feat[:, timestamps.index(step+1)] = pred_multi_level_feat_t
surface_in_feat = pred_surface_feat_t
multi_level_in_feat = pred_multi_level_feat_t
pred_feat_dict = {}
c1 = 0 # index for surface features
c2 = 0 # index for multi-level features
for i, k in enumerate(out_feat_dict.keys()):
out_feat_dict[k] = out_feat_dict[k].index_select(1, torch.tensor(timestamps) - 1).to(device)
# we dont need the reconstruction results
if variable_levels[i] == 1:
pred_feat_dict[k] = pred_surface_feat[..., c1]
c1 += 1
elif variable_levels[i] > 1:
pred_feat_dict[k] = pred_multi_level_feat[..., c2]
c2 += 1
normalizer.batch_denormalize(pred_feat_dict)
if not return_pred:
return apply_loss_fn_to_dict(pred_feat_dict, out_feat_dict, loss_fn)
else:
return apply_loss_fn_to_dict(pred_feat_dict, out_feat_dict, loss_fn), pred_feat_dict
@torch.no_grad()
def validate_loop(model,
timestamps,
logger,
global_step,
val_dataset,
val_batch_size,
config,
device):
print('Validating...')
logger.info('====================================')
logger.info('Validating...')
logger.info(f'Iter steps: {global_step}')
model = copy.deepcopy(model)
model.eval()
BS = val_batch_size
val_dataloader = DataLoader(val_dataset,
batch_size=BS)
val_loss_fn = latitude_weighted_rmse
val_loss_dict = {}
# randomly select a batch
i_vis = 3
pbar = tqdm(val_dataloader)
residual_normalizer = configure_residual_stat(config)
residual_normalizer = residual_normalizer.to(device)
for i, batch in enumerate(pbar):
input_dict, target_dict, constants, _, _, _ = batch
loss_dict, pred_dict = epd_predict(model, timestamps, input_dict, target_dict, constants,
val_dataset.datareader.normalizer,
residual_normalizer,
val_loss_fn,
config=config,
device=device,
return_pred=True)
for k in loss_dict.keys():
if k not in val_loss_dict.keys():
val_loss_dict[k] = []
val_loss_dict[k].append(loss_dict[k].cpu().detach().numpy())
# hard coded to visualize the 2m temperature and geopotential 500hPa
if i == i_vis:
target = target_dict['2m_temperature'].cpu().detach().numpy()
pred = pred_dict['2m_temperature'].cpu().detach().numpy()
plot_result_2d(target, pred,
num_t=target.shape[1],
filename=os.path.join(config.log_dir, 'images',
f'val_{i_vis}_iter_t2m:{global_step}.png'))
target = target_dict['geopotential'].cpu().detach().numpy()
pred = pred_dict['geopotential'].cpu().detach().numpy()
plot_result_2d(target[..., 6], pred[..., 6],
num_t=target.shape[1],
filename=os.path.join(config.log_dir, 'images',
f'val_{i_vis}_iter_z500:{global_step}.png'))
for k in val_loss_dict.keys():
v = np.concatenate(val_loss_dict[k], axis=0) # stack along batch
v = np.mean(v, axis=0) # [time, level] or [time]
interval = config.data.interval
idx_72, idx_120, idx_168 = \
timestamps.index(int(72 / (interval * 6)) ), timestamps.index(int(120 / (interval * 6)) ), \
timestamps.index(int(168 / (interval * 6)) )
if 'temperature' in k or 'geopotential' in k:
if len(v.shape) == 2:
for l_num in range(v.shape[1]):
if ((l_num == v.shape[1] - 3 and k =='temperature') or # 850hPa
(l_num == v.shape[1] - 6 and k == 'geopotential')): # 500hPa
print(f'Validation rmse for {k}_{l_num} at 72hr/120hr/240hr:'
f'{v[idx_72, l_num]:.4f}/{v[idx_120, l_num]:.4f}/{v[idx_168, l_num]:.4f}')
logger.info(f'Validation rmse for {k}_{l_num} at 72hr/120hr/168hr:'
f'{v[idx_72, l_num]:.4f}/{v[idx_120, l_num]:.4f}/{v[idx_168, l_num]:.4f}')
wandb.log({
f'val_rmse_{k}_{l_num}_next': np.round(v[0, l_num], 4),
f'val_rmse_{k}_{l_num}_72hr': np.round(v[idx_72, l_num], 4),
f'val_rmse_{k}_{l_num}_120hr': np.round(v[idx_120, l_num], 4),
f'val_rmse_{k}_{l_num}_168hr': np.round(v[idx_168, l_num], 4),
})
elif len(v.shape) == 1:
print(f'Validation rmse for {k} at 72hr/120hr/168hr:'
f'{v[idx_72]:.4f}/{v[idx_120]:.4f}/{v[idx_168]:.4f}')
wandb.log({
f'val_rmse_{k}_next': np.round(v[0], 4),
f'val_rmse_{k}_72hr': np.round(v[idx_72], 4),
f'val_rmse_{k}_120hr': np.round(v[idx_120], 4),
f'val_rmse_{k}_168hr': np.round(v[idx_168], 4),
})
else:
raise ValueError('Invalid shape of v')
logger.info('====================================')
# clear cuda cache
del model
torch.cuda.empty_cache()
return
def parse_args_and_config():
parser = argparse.ArgumentParser(description=globals()['__doc__'])
parser.add_argument('--config', type=str, required=True, help='Path to the config file')
parser.add_argument('--comment', type=str, default='', help='Comment')
parser.add_argument('--global_seed', type=int, default=970314, help='Global seed')
args = parser.parse_args()
# parse config file
with open(args.config, 'r') as f:
config = yaml.safe_load(f)
config = dict2namespace(config)
# copy the config file to the log_dir
return args, config