forked from meta-llama/llama-cookbook
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathinference.py
65 lines (48 loc) · 2.33 KB
/
inference.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
import fire
from transformers import AutoTokenizer, AutoModelForCausalLM
from llama_recipes.inference.prompt_format_utils import build_prompt, create_conversation, LLAMA_GUARD_CATEGORY
from typing import List, Tuple
from enum import Enum
class AgentType(Enum):
AGENT = "Agent"
USER = "User"
def main():
"""
Entry point of the program for generating text using a pretrained model.
Args:
ckpt_dir (str): The directory containing checkpoint files for the pretrained model.
tokenizer_path (str): The path to the tokenizer model used for text encoding/decoding.
temperature (float, optional): The temperature value for controlling randomness in generation.
Defaults to 0.6.
top_p (float, optional): The top-p sampling parameter for controlling diversity in generation.
Defaults to 0.9.
max_seq_len (int, optional): The maximum sequence length for input prompts. Defaults to 128.
max_gen_len (int, optional): The maximum length of generated sequences. Defaults to 64.
max_batch_size (int, optional): The maximum batch size for generating sequences. Defaults to 4.
"""
prompts: List[Tuple[List[str], AgentType]] = [
(["<Sample user prompt>"], AgentType.USER),
(["<Sample user prompt>",
"<Sample agent response>"], AgentType.AGENT),
(["<Sample user prompt>",
"<Sample agent response>",
"<Sample user reply>",
"<Sample agent response>",], AgentType.AGENT),
]
model_id = "meta-llama/LlamaGuard-7b"
tokenizer = AutoTokenizer.from_pretrained(model_id)
model = AutoModelForCausalLM.from_pretrained(model_id, load_in_8bit=True, device_map="auto")
for prompt in prompts:
formatted_prompt = build_prompt(
prompt[1],
LLAMA_GUARD_CATEGORY,
create_conversation(prompt[0]))
input = tokenizer([formatted_prompt], return_tensors="pt").to("cuda")
prompt_len = input["input_ids"].shape[-1]
output = model.generate(**input, max_new_tokens=100, pad_token_id=0)
results = tokenizer.decode(output[0][prompt_len:], skip_special_tokens=True)
print(prompt[0])
print(f"> {results}")
print("\n==================================\n")
if __name__ == "__main__":
fire.Fire(main)