-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain_sourceonly.py
366 lines (320 loc) · 15.6 KB
/
train_sourceonly.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
import argparse
import os
import os.path as osp
import numpy as np
import random
import torch
import torch.nn as nn
import torch.optim as optim
from torch.utils.data import DataLoader
from torchvision import transforms
from timm.data.constants import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD
from timm.data import Mixup
from timm.loss import SoftTargetCrossEntropy
import network, loss
from data_list import ImageList, ImageList_idx
from sklearn.metrics import confusion_matrix
from timm_diy.models import create_model
from timm_diy.data import create_transform
def op_copy(optimizer):
for param_group in optimizer.param_groups:
param_group['lr0'] = param_group['lr']
return optimizer
def lr_scheduler(optimizer, iter_num, max_iter, gamma=10, power=0.75, weight_decay=1e-3):
decay = (1 + gamma * iter_num / max_iter) ** (-power)
for param_group in optimizer.param_groups:
param_group['lr'] = param_group['lr0'] * decay
param_group['weight_decay'] = weight_decay
param_group['momentum'] = 0.9
param_group['nesterov'] = True
return optimizer
def build_transform(is_train, args):
input_size = 224
resize_im = input_size > 32
if is_train:
# this should always dispatch to transforms_imagenet_train
transform = create_transform(
input_size=input_size,
is_training=True,
color_jitter=args.color_jitter,
auto_augment=args.aa,
interpolation=args.train_interpolation,
re_prob=args.reprob,
re_mode=args.remode,
re_count=args.recount,
)
return transform
t = []
if resize_im:
size = int((256 / 224) * input_size)
t.append(
transforms.Resize((size,size), interpolation=3), # to maintain same ratio w.r.t. 224 images
)
t.append(transforms.CenterCrop(input_size))
t.append(transforms.ToTensor())
t.append(transforms.Normalize(IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD))
return transforms.Compose(t)
def data_load(args):
## prepare data
dsets = {}
dset_loaders = {}
train_bs = args.batch_size
txt_src = open(args.s_dset_path).readlines()
dsets["source"] = ImageList_idx(txt_src, transform=build_transform(True, args))
dset_loaders["source"] = DataLoader(dsets["source"], batch_size=train_bs, shuffle=True, num_workers=args.worker, drop_last=True)
dsets["test"] = []
dset_loaders["test"] = []
for i in args.test_dset_path:
txt_test = open(i).readlines()
dsets["test"].append(ImageList(txt_test, transform=build_transform(False, args)))
dset_loaders["test"].append(DataLoader(dsets["test"][-1], batch_size=train_bs * 2, shuffle=False,
num_workers=args.worker,
drop_last=False))
return dset_loaders
def cal_acc(loader, model, visda=False):
start_test = True
with torch.no_grad():
iter_test = iter(loader)
for i in range(len(loader)):
data = iter_test.next()
inputs = data[0]
labels = data[1]
inputs = inputs.cuda()
if inputs.size(0) % 2 == 1:
inputs_a = torch.zeros(1, 3, 224, 224).cuda()
inputs = torch.cat((inputs, inputs_a), dim=0)
outputs = model(inputs)
outputs = outputs[:-1]
else:
outputs = model(inputs)
if start_test:
all_output = outputs.float().cpu()
all_label = labels.float()
start_test = False
else:
all_output = torch.cat((all_output, outputs.float().cpu()), 0)
all_label = torch.cat((all_label, labels.float()), 0)
_, predict = torch.max(all_output, 1)
accuracy = torch.sum(torch.squeeze(predict).float() == all_label).item() / float(all_label.size()[0])
if visda:
matrix = confusion_matrix(all_label, torch.squeeze(predict).float())
acc = matrix.diagonal()/matrix.sum(axis=1) * 100
aacc = acc.mean()
aa = [str(np.round(i, 2)) for i in acc]
acc = ' '.join(aa)
return aacc, acc
else:
return accuracy*100
def train(args):
dset_loaders = data_load(args)
if args.model == 'vit_small':
model = create_model("vit_small_patch16_224", pretrained=False, num_classes=args.class_num
)
pretrained_model = './pretrained/deit_small_distilled_patch16_224-649709d9.pth' # we adopt the distilled version for better performance
elif args.model == 'vit_base':
model = create_model("vit_base_patch16_224", pretrained=False, num_classes=args.class_num
)
pretrained_model = './pretrained/deit_base_distilled_patch16_224-df68dfff.pth'
pretrained = torch.load(pretrained_model)
del pretrained['head.weight'], pretrained['head.bias']
del pretrained['head_dist.weight'], pretrained['head_dist.bias'] # since pretrained model has an additional head
del pretrained['dist_token']
pos_embed = pretrained['pos_embed'].data
pos_embed = torch.cat([pos_embed[:,0:1],pos_embed[:,2:]],dim=1)
pretrained['pos_embed'] = pos_embed
model.load_state_dict(pretrained, strict=False)
# print(torch.cuda.is_available())
model = model.cuda()
learning_rate = args.lr
param_group = []
if args.tentimes:
for k, v in model.named_parameters():
if k.find('head') != -1:
param_group += [{'params': v, 'lr': learning_rate*10}]
else:
param_group += [{'params': v, 'lr': learning_rate}]
else:
for k, v in model.named_parameters():
param_group += [{'params': v, 'lr': learning_rate}]
optimizer = optim.SGD(param_group)
optimizer = op_copy(optimizer)
criterion = nn.CrossEntropyLoss()
interval_iter = 2000
max_iter = args.max_epoch * interval_iter
iter_num = 0
mixup_fn = None
if args.mixup_active:
mixup_fn = Mixup(
mixup_alpha=args.mixup, cutmix_alpha=args.cutmix, cutmix_minmax=args.cutmix_minmax,
prob=args.mixup_prob, switch_prob=args.mixup_switch_prob, mode=args.mixup_mode,
label_smoothing=args.smoothing, num_classes=args.class_num)
criterion = SoftTargetCrossEntropy()
model.train()
sum_cls_loss = 0.0
while iter_num < max_iter:
try:
inputs_source, labels_source, _ = iter_source.next()
except:
iter_source = iter(dset_loaders["source"])
inputs_source, labels_source, _ = iter_source.next()
if mixup_fn is not None:
inputs_source, labels_source = mixup_fn(inputs_source.cuda(), labels_source.cuda())
else:
inputs_source, labels_source = inputs_source.cuda(), labels_source.cuda()
iter_num += 1
lr_scheduler(optimizer, iter_num=iter_num, max_iter=max_iter, weight_decay=args.weight_decay)
inputs_source, labels_source = inputs_source.cuda(), labels_source.cuda()
outputs_source = model(inputs_source)
cls_loss = criterion(outputs_source, labels_source)
total_loss = cls_loss
optimizer.zero_grad()
total_loss.backward()
optimizer.step()
sum_cls_loss += cls_loss.item()
#print(iter_num)
if iter_num % 100 == 0:
log_str = 'Iter: {}, ClsLoss = {:.3f}'.format(iter_num, sum_cls_loss/100)
args.out_file.write(log_str + '\n')
args.out_file.flush()
print(log_str + '\n')
sum_cls_loss = 0.
if iter_num % interval_iter == 0 or iter_num == max_iter:
model.eval()
for k in range(len(args.test_dset_path)):
if args.dset == 'visda2017':
acc_s_te, acc_list = cal_acc(dset_loaders['test'][k], model, True)
log_str = 'Task: {}({}), Iter:{}/{}; Accuracy = {:.2f}%'.format(args.name_src, args.name_test[k], iter_num,
max_iter, acc_s_te) + '\n' + acc_list
else:
acc_s_te = cal_acc(dset_loaders['test'][k], model, False)
log_str = 'Task: {}({}), Iter:{}/{}; Accuracy = {:.2f}%'.format(args.name_src, args.name_test[k], iter_num,
max_iter, acc_s_te)
args.out_file.write(log_str + '\n')
args.out_file.flush()
print(log_str + '\n')
model.train()
if args.save:
if args.model == 'vit_small':
torch.save(model.state_dict(), osp.join(args.output_dir_src, "source_vitS-IN1k.pth"))
print("Finish training. Source model saved at "+osp.join(args.output_dir_src, "source_vitS-IN1k.pth"))
if args.model == 'vit_base':
torch.save(model.state_dict(), osp.join(args.output_dir_src, "source_vitB-IN1k.pth"))
print("Finish training. Source model saved at "+osp.join(args.output_dir_src, "source_vitB-IN1k.pth"))
return model
def print_args(args):
s = "==========================================\n"
for arg, content in args.__dict__.items():
s += "{}:{}\n".format(arg, content)
return s
if __name__ == "__main__":
parser = argparse.ArgumentParser(description='SOURCE')
parser.add_argument('--gpu_id', type=str, nargs='?', default='1', help="device id to run")
parser.add_argument('--s', type=int, default=0, help="source")
parser.add_argument('--max_epoch', type=int, default=5, help="max iterations")
parser.add_argument('--batch_size', type=int, default=32, help="batch_size")
parser.add_argument('--worker', type=int, default=8, help="number of workers")
parser.add_argument('--dset', type=str, default='home', choices=['visda2017', 'home', 'domainnet'])
parser.add_argument('--lr', type=float, default=3e-4, help="learning rate")
parser.add_argument('--tentimes', default=False, action="store_true", help="whether 10x learning rate for head")
parser.add_argument('--weight_decay', type=float, default=1e-3, help="weight decay")
parser.add_argument('--seed', type=int, default=2022, help="random seed")
parser.add_argument('--output_src', type=str, default='source_model')
parser.add_argument('--model', type=str, default='vit_small', choices=['vit_small', 'vit_base'])
parser.add_argument('--dataset_path', type=str, default='./data/')
parser.add_argument('--save', default=False, action="store_true")
# Augmentation parameters
parser.add_argument('--color-jitter', type=float, default=0.4, metavar='PCT',
help='Color jitter factor (default: 0.4)')
parser.add_argument('--aa', type=str, default='rand-m9-n2-mstd0', metavar='NAME',
help='Use AutoAugment policy. "v0" or "original". " + \
"(default: rand-m9-mstd0.5-inc1)'),
parser.add_argument('--smoothing', type=float, default=0.1, help='Label smoothing (default: 0.1)')
parser.add_argument('--train-interpolation', type=str, default='bicubic',
help='Training interpolation (random, bilinear, bicubic default: "bicubic")')
parser.add_argument('--repeated-aug', action='store_true')
parser.add_argument('--no-repeated-aug', action='store_false', dest='repeated_aug')
parser.set_defaults(repeated_aug=True)
# * Random Erase params
parser.add_argument('--reprob', type=float, default=0.25, metavar='PCT',
help='Random erase prob (default: 0.25)')
parser.add_argument('--remode', type=str, default='pixel',
help='Random erase mode (default: "pixel")')
parser.add_argument('--recount', type=int, default=1,
help='Random erase count (default: 1)')
parser.add_argument('--resplit', action='store_true', default=False,
help='Do not random erase first (clean) augmentation split')
# * Mixup params
parser.add_argument('--mixup-active', action='store_true', default=False,
help='enable mixup')
parser.add_argument('--mixup', type=float, default=0.8,
help='mixup alpha, mixup enabled if > 0. (default: 0.8)')
parser.add_argument('--cutmix', type=float, default=1.0,
help='cutmix alpha, cutmix enabled if > 0. (default: 1.0)')
parser.add_argument('--cutmix-minmax', type=float, nargs='+', default=None,
help='cutmix min/max ratio, overrides alpha and enables cutmix if set (default: None)')
parser.add_argument('--mixup-prob', type=float, default=1.0,
help='Probability of performing mixup or cutmix when either/both is enabled')
parser.add_argument('--mixup-switch-prob', type=float, default=0.5,
help='Probability of switching to cutmix when both mixup and cutmix enabled')
parser.add_argument('--mixup-mode', type=str, default='batch',
help='How to apply mixup/cutmix params. Per "batch", "pair", or "elem"')
args = parser.parse_args()
if args.dset == 'home':
names = ['Art', 'Clipart', 'Product', 'RealWorld']
args.class_num = 65
if args.dset == 'visda2017':
names = ['synthetic', 'real']
args.class_num = 12
if args.dset == 'domainnet':
names = ['clipart', 'infograph', 'painting', 'quickdraw', 'real', 'sketch']
args.class_num = 345
os.environ["CUDA_VISIBLE_DEVICES"] = args.gpu_id
SEED = args.seed
torch.manual_seed(SEED)
torch.cuda.manual_seed(SEED)
np.random.seed(SEED)
random.seed(SEED)
# torch.backends.cudnn.deterministic = True
folder = args.dataset_path
if args.dset == 'domainnet':
args.s_dset_path = folder + args.dset + '/' + names[args.s] + '_train.txt'
args.t_dset_path = []
args.test_dset_path = []
for i in range(len(names)):
if i == args.s:
continue
args.t_dset_path.append(folder + args.dset + '/' + names[i] + '_train.txt')
args.test_dset_path.append(folder + args.dset + '/' + names[i] + '_test.txt')
if args.dset == 'home':
args.s_dset_path = folder + args.dset + '/' + names[args.s] + '_' + str(args.class_num) + '.txt'
args.t_dset_path = []
for i in range(len(names)):
if i == args.s:
continue
args.t_dset_path.append(folder + args.dset + '/' + names[i] + '_' + str(args.class_num) + '.txt')
args.test_dset_path = args.t_dset_path
if args.dset == 'visda2017':
args.s_dset_path = folder + args.dset + '/' + names[args.s] + '_' + str(args.class_num) + '.txt'
args.t_dset_path = []
for i in range(len(names)):
if i == args.s:
continue
args.t_dset_path.append(folder + args.dset + '/' + names[i] + '_' + str(args.class_num) + '.txt')
args.test_dset_path = args.t_dset_path
args.output_dir_src = osp.join(args.output_src, args.dset, names[args.s][0].upper()+'-'+args.model)
if args.dset == 'domainnet':
args.name_src = names[args.s][0]
args.name_test = [name[0] for name in names]
else:
args.name_src = names[args.s][0].upper()
args.name_test = [name[0].upper() for name in names]
args.name_test.remove(args.name_src)
if not osp.exists(args.output_dir_src):
os.system('mkdir -p ' + args.output_dir_src)
if not osp.exists(args.output_dir_src):
os.mkdir(args.output_dir_src)
args.out_file = open(osp.join(args.output_dir_src, 'log.txt'), 'w')
args.out_file.write(print_args(args)+'\n')
args.out_file.flush()
print(args)
train(args)