-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathutils_experiment.py
450 lines (413 loc) · 14.5 KB
/
utils_experiment.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
# -*- coding: utf-8 -*-
"""
Experiment Class for sparse
Metrics classes
Runner class
Helper load and save functions
"""
# pylint: disable=E1101, W0221, W0201
from os import path
import copy
from functools import partial
from ax import Metric, Data, Runner, Experiment, OptimizationConfig
from ax.storage.metric_registry import register_metric
from ax.storage.runner_registry import register_runner
from ax.core.objective import MultiObjective, Objective
from pandas import DataFrame, read_csv
from numpy import log
from torch import save, load
from operator import itemgetter
from .utils_data import get_shape_from_dataloader
from .quant_n_prune import quant
from .model import SimpleTrainer
# TODO: use original repo
from .flops_counter_experimental import get_model_complexity_info
class SparseExperiment:
"""
Class for the Sparse Experiment
"""
def __init__(self, epochs, **kwargs):
allowed_keys = {
"root",
"name",
"objectives",
"epochs",
"pruning",
"datasets",
"classes",
"search_space",
"net",
"flops",
"quant_scheme",
"quant_params",
"collate_fn",
"splitter",
"models_path",
"cuda",
"trainer"
}
self.__dict__.update((k, v) for k, v in kwargs.items() if k in allowed_keys)
self.epochs = epochs
def create_load_experiment(self):
""" Creates the experiment or loads it from the json file"""
if path.exists(path.join(self.root, self.name + ".json")):
exp = load_data(path.join(self.root, self.name), self.objectives)
data = pass_data_to_exp(path.join(self.root, self.name + ".csv"))
exp.attach_data(data)
else:
exp = self.get_experiment()
data = Data()
return exp, data
def get_experiment(self):
""" Creates the experiment defining the metrics and the configuration"""
metric_list = [
AccuracyMetric(
self.epochs,
name="error",
pruning=self.pruning,
datasets=self.datasets,
classes=self.classes,
net=self.net,
quant_scheme=self.quant_scheme,
quant_params=self.quant_params,
collate_fn=self.collate_fn,
splitter=self.splitter,
models_path=self.models_path,
cuda=self.cuda,
trainer=self.trainer
),
WeightMetric(
name="weight",
datasets=self.datasets,
classes=self.classes,
net=self.net,
collate_fn=self.collate_fn,
splitter=self.splitter,
trainer=self.trainer
),
FeatureMapMetric(
name="ram",
datasets=self.datasets,
classes=self.classes,
net=self.net,
collate_fn=self.collate_fn,
splitter=self.splitter,
trainer=self.trainer
),
LatencyMetric(
name="latency",
datasets=self.datasets,
classes=self.classes,
net=self.net,
flops_capacity=self.flops,
collate_fn=self.collate_fn,
splitter=self.splitter,
trainer=self.trainer
),
]
experiment = Experiment(
name="experiment_building_blocks", search_space=self.search_space
)
metrics = list(itemgetter(*self.objectives)(metric_list))
if len(self.objectives) > 1:
objective = MultiObjective(
metrics=metrics, minimize=True
)
else:
objective = Objective(
metric=metrics[0], minimize=True
)
optimization_config = OptimizationConfig(objective=objective)
experiment.optimization_config = optimization_config
experiment.runner = MyRunner()
return experiment
class AccuracyMetric(Metric):
"""
Class for the accuracy metric
"""
# TODO: stringt to call specific dataset, look at the trainer class
def __init__(
self,
epochs,
name,
pruning,
datasets,
classes,
net,
quant_scheme,
quant_params=None,
collate_fn=None,
splitter=False,
models_path=None,
cuda="cuda:0",
trainer=None
):
super().__init__(name, lower_is_better=True)
self.epochs = epochs
if trainer:
self.trainer = trainer(pruning=pruning, datasets=datasets, models_path=models_path, cuda=cuda)
else:
self.trainer = SimpleTrainer(
pruning=pruning, datasets=datasets, models_path=models_path, cuda=cuda
)
self.reload = False
self.old_net = None
self.pruning = pruning
self.datasets = datasets
self.classes = classes
self.net = net
self.quant_scheme = quant_scheme
self.quant_params = quant_params
self.collate_fn = collate_fn
self.splitter = splitter
self.models_path = models_path
self.cuda = cuda
def fetch_trial_data(self, trial):
"""
Function to retrieve the trials data for this metric
"""
records = []
for arm_name, arm in trial.arms_by_name.items():
self.parametrization = arm.parameters
result = self.train_evaluate(arm_name)
records.append(
{
"arm_name": arm_name,
"metric_name": self.name,
"mean": result,
"sem": 0.0,
"trial_index": trial.index,
}
)
return Data(df=DataFrame.from_records(records))
def train_evaluate(self, name):
"""
Trains the network and evaluates its performance on the test set
"""
collate_fn = copy.copy(self.collate_fn)
if self.splitter:
collate_fn = partial(
collate_fn, max_len=self.parametrization.get("max_len")
)
self.trainer.load_dataloaders(
self.parametrization.get("batch_size", 4), collate_fn=collate_fn
)
input_shape = get_shape_from_dataloader(
self.trainer.dataloader["train"], self.parametrization
)
net_i = self.net(
self.parametrization, classes=self.classes, input_shape=input_shape
)
net_i = self.trainer.train(
net_i, self.parametrization, name, self.epochs, self.reload, self.old_net
)
net_i = quant(net_i, self.quant_scheme, self.trainer, self.quant_params)
result, net_i = self.trainer.evaluate(net_i, quant_mode=False)
save(
net_i.state_dict(), path.join(self.models_path, str(name) + "_qq" + ".pth")
)
return 1 - result
class WeightMetric(Metric):
"""
Class for the weight metric
"""
def __init__(self, name, datasets, classes, net, collate_fn, splitter, trainer=None):
super().__init__(name, lower_is_better=True)
# TODO: maximum limit is nowadays hardcoded as 10**8, change to
# variable
self.top = log(10 ** 8)
self.classes = classes
self.net = net
if trainer:
self.trainer = trainer(pruning=True, datasets=datasets)
else:
self.trainer = SimpleTrainer(pruning=True, datasets=datasets)
self.collate_fn = collate_fn
self.splitter = splitter
def fetch_trial_data(self, trial):
"""
Function to retrieve the trials data for this metric
"""
records = []
for arm_name, arm in trial.arms_by_name.items():
self.parametrization = arm.parameters
records.append(
{
"arm_name": arm_name,
"metric_name": self.name,
"mean": self.net_weighting(),
"sem": 0.0,
"trial_index": trial.index,
}
)
return Data(df=DataFrame.from_records(records))
def net_weighting(self):
"""
Builds the network and evaluates how many parameters does it have
"""
collate_fn = copy.copy(self.collate_fn)
if self.splitter:
collate_fn = partial(
collate_fn, max_len=self.parametrization.get("max_len")
)
self.trainer.load_dataloaders(
self.parametrization.get("batch_size", 4), collate_fn=collate_fn
)
input_shape = get_shape_from_dataloader(
self.trainer.dataloader["train"], self.parametrization
)
net_i = self.net(
self.parametrization, classes=self.classes, input_shape=input_shape
)
n_params = int(sum((p != 0).sum() for p in net_i.parameters()))
weight = log(n_params) / self.top
return weight
# TODO: compute feature map outside Net and make it generalizable
class FeatureMapMetric(Metric):
"""
Class for the weight metric
"""
def __init__(self, name, datasets, classes, net, collate_fn, splitter, trainer=None):
super().__init__(name, lower_is_better=True)
# TODO: maximum limit is nowadays hardcoded as 10**8, change to
# variable
self.top = log(10 ** 8)
self.classes = classes
self.net = net
if trainer:
self.trainer = trainer(pruning=True, datasets=datasets)
else:
self.trainer = SimpleTrainer(pruning=True, datasets=datasets)
self.collate_fn = collate_fn
self.splitter = splitter
def fetch_trial_data(self, trial):
"""
Function to retrieve the trials data for this metric
"""
records = []
for arm_name, arm in trial.arms_by_name.items():
self.parametrization = arm.parameters
records.append(
{
"arm_name": arm_name,
"metric_name": self.name,
"mean": self.net_weighting(),
"sem": 0.0,
"trial_index": trial.index,
# TODO: add time spent in each trial
}
)
return Data(df=DataFrame.from_records(records))
def net_weighting(self):
"""
Builds the network and evaluates how many parameters does it have
"""
collate_fn = copy.copy(self.collate_fn)
if self.splitter:
collate_fn = partial(
collate_fn, max_len=self.parametrization.get("max_len")
)
self.trainer.load_dataloaders(
self.parametrization.get("batch_size", 4), collate_fn=collate_fn
)
input_shape = get_shape_from_dataloader(
self.trainer.dataloader["train"], self.parametrization
)
net_i = self.net(
self.parametrization, classes=self.classes, input_shape=input_shape
)
net_i.eval()
_, _, maxram = get_model_complexity_info(
net_i,
input_shape,
as_strings=False,
print_per_layer_stat=False,
verbose=False,
)
# TODO: standarize_onjective
return log(maxram) / self.top
class LatencyMetric(Metric):
""" IMplements latency according to the number of operations in the network"""
def __init__(
self, name, datasets, classes, net, flops_capacity, collate_fn, splitter,
trainer=None
):
super().__init__(name, lower_is_better=True)
self.classes = classes
self.net = net
self.flops_capacity = flops_capacity
self.top = log(10 ** 4)
if trainer:
self.trainer = trainer(pruning=True, datasets=datasets)
else:
self.trainer = SimpleTrainer(pruning=True, datasets=datasets)
self.collate_fn = collate_fn
self.splitter = splitter
def fetch_trial_data(self, trial):
"""
Function to retrieve the trials data for this metric
"""
records = []
for arm_name, arm in trial.arms_by_name.items():
self.parametrization = arm.parameters
records.append(
{
"arm_name": arm_name,
"metric_name": self.name,
"mean": self.latency_measure(),
"sem": 0.0,
"trial_index": trial.index,
# TODO: add time spent in each trial
}
)
return Data(df=DataFrame.from_records(records))
def latency_measure(self):
"""
Returns in miliseconds
"""
collate_fn = copy.copy(self.collate_fn)
if self.splitter:
collate_fn = partial(
collate_fn, max_len=self.parametrization.get("max_len")
)
self.trainer.load_dataloaders(
self.parametrization.get("batch_size", 4), collate_fn=collate_fn
)
input_shape = get_shape_from_dataloader(
self.trainer.dataloader["train"], self.parametrization
)
net_i = self.net(
self.parametrization, classes=self.classes, input_shape=input_shape
)
# input shape can be an image CxHxW or a sequence LxF
macs, _, _ = get_model_complexity_info(
net_i,
input_shape,
as_strings=False,
print_per_layer_stat=False,
verbose=False,
)
miliseconds = macs * 1000 / self.flops_capacity
# TODO: is necessary this add to avoid negatives?
# https://math.stackexchange.com/questions/1111041/showing-y%E2%89%88x-for-small-x-if-y-logx1
return log(miliseconds + 1) / self.top
class MyRunner(Runner):
"""
Runner class for fetching and deploying evaluations
"""
def run(self, trial):
return {"name": str(trial.index)}
def load_data(name, n_obj=None):
""" Loads the data from the experiment file json"""
metrics = [AccuracyMetric, WeightMetric, FeatureMapMetric, LatencyMetric]
metrics_register = list(itemgetter(*n_obj)(metrics))
for i in metrics_register:
register_metric(i)
register_runner(MyRunner)
name = name + ".json"
return load(name)
def pass_data_to_exp(csv):
"""Loads the values from each of the evaluations to be further
passed to a experiment"""
dataframe = read_csv(csv, index_col=0)
return Data(df=dataframe)