-
Notifications
You must be signed in to change notification settings - Fork 413
/
ObjectPools.cs
139 lines (127 loc) · 5.36 KB
/
ObjectPools.cs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
//------------------------------------------------------------------------------
//
// Copyright (c) Microsoft Corporation.
// All rights reserved.
//
// This code is licensed under the MIT License.
//
// Permission is hereby granted, free of charge, to any person obtaining a copy
// of this software and associated documentation files(the "Software"), to deal
// in the Software without restriction, including without limitation the rights
// to use, copy, modify, merge, publish, distribute, sublicense, and / or sell
// copies of the Software, and to permit persons to whom the Software is
// furnished to do so, subject to the following conditions :
//
// The above copyright notice and this permission notice shall be included in
// all copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.IN NO EVENT SHALL THE
// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
// THE SOFTWARE.
//
//------------------------------------------------------------------------------
using System;
using System.Threading;
namespace Microsoft.IdentityModel.Tokens
{
/// <summary>
/// Generic implementation of object pooling pattern with predefined pool size limit. The main
/// purpose is that limited number of frequently used objects can be kept in the pool for
/// further recycling.
///
/// Notes:
/// 1) it is not the goal to keep all returned objects. Pool is not meant for storage. If there
/// is no space in the pool, extra returned objects will be dropped.
///
/// 2) it is implied that if object was obtained from a pool, the caller will return it back in
/// a relatively short time. Keeping checked out objects for long durations is ok, but
/// reduces usefulness of pooling. Just new up your own.
///
/// Not returning objects to the pool in not detrimental to the pool's work, but is a bad practice.
/// Rationale:
/// If there is no intent for reusing the object, do not use pool - just use "new".
/// </summary>
internal sealed class DisposableObjectPool<T> where T : class, IDisposable
{
internal struct Element
{
internal T Value;
}
// factory is stored for the lifetime of the pool. We will call this only when pool needs to
// expand. compared to "new T()", Func gives more flexibility to implementers and faster
// than "new T()".
private readonly Func<T> _factory;
internal DisposableObjectPool(Func<T> factory)
: this(factory, Environment.ProcessorCount * 2)
{ }
internal DisposableObjectPool(Func<T> factory, int size)
{
_factory = factory;
Items = new Element[size];
}
// storage for the pool objects.
internal Element[] Items { get; }
private T CreateInstance()
{
var inst = _factory();
return inst;
}
/// <summary>
/// Produces an instance.
/// </summary>
/// <remarks>
/// Search strategy is a simple linear probing which is chosen for it cache-friendliness.
/// Note that Free will try to store recycled objects close to the start thus statistically
/// reducing how far we will typically search.
/// </remarks>
internal T Allocate()
{
var items = Items;
T inst;
for (int i = 0; i < items.Length; i++)
{
// Note that the read is optimistically not synchronized. That is intentional.
// We will interlock only when we have a candidate. in a worst case we may miss some
// recently returned objects. Not a big deal.
inst = items[i].Value;
if (inst != null)
{
if (inst == Interlocked.CompareExchange(ref items[i].Value, null, inst))
{
goto gotInstance;
}
}
}
inst = CreateInstance();
gotInstance:
return inst;
}
/// <summary>
/// Returns objects to the pool.
/// </summary>
/// <remarks>
/// Search strategy is a simple linear probing which is chosen for it cache-friendliness.
/// Note that Free will try to store recycled objects close to the start thus statistically
/// reducing how far we will typically search in Allocate.
/// </remarks>
internal void Free(T obj)
{
var items = Items;
for (int i = 0; i < items.Length; i++)
{
if (items[i].Value == null)
{
// Intentionally not using interlocked here.
// In a worst case scenario two objects may be stored into same slot.
// It is very unlikely to happen and will only mean that one of the objects will get collected.
items[i].Value = obj;
break;
}
}
}
}
}