-
Notifications
You must be signed in to change notification settings - Fork 16
/
Copy pathTwo Phase Simplex Method.cpp
340 lines (334 loc) · 10.3 KB
/
Two Phase Simplex Method.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
#include <iostream>
#include <vector>
#include <set>
#include <cmath>
#include <cstdlib>
using namespace std;
#define EPS 1E-9
#define DEBUG 0
int count;
inline int identity_col (const vector <vector <double> > & A, int c) {
int count = 0, row;
for (int r=0; r<A.size(); r++)
if (A[r][c] > EPS) { count++; row = r; }
return (count == 1) ? row : -1;
}
void canonicalize ( vector <vector <double> > & A,
vector <double>& B,
vector <double>& C,
vector <int>& BasicVarR, // basic variable of each row
double & obj // objective value
)
{
int m = A.size(), n = C.size();
for (int r=0; r<m; r++) {
int bc = BasicVarR[r]; // col. that the basic variable is in
if ( fabs(A[r][bc] - 1.0) > EPS) {
double p = A[r][bc];
for (int c=0; c<n; c++) A[r][c] /= p;
B[r] /= p;
}
if (fabs(C[bc]) > EPS) {
double p = C[bc];
for (int c=0; c<n; c++) C[c] -= A[r][c] * p;
obj -= B[r] * p;
}
}
}
bool pivoting ( vector <vector <double> > & A,
vector <double>& B,
vector <double>& C,
vector <int>& BasicVarR, // basic variable of each row
double & obj // objective value
)
{
int m = A.size(), n = C.size();
while (1) {
int ev = 0; // id of the entering variable
for (ev=0; ev<n; ev++)
if (C[ev] < -EPS) break;
if (ev == n) break; // optimum reached.
int lvr = -1; // leaving variable, id'ed by row
double minRatio;
for (int r=0; r<m; r++) {
if (A[r][ev] > EPS) {
if ( lvr < 0 || B[r]/A[r][ev] < minRatio ) {
lvr = r; minRatio = B[r] / A[r][ev];
}
}
}
if (lvr < 0) return true; // unbounded
int lv = BasicVarR[lvr]; // leaving variable
BasicVarR[lvr] = ev;
double p = A[lvr][ev];
for (int c=0; c<n; c++) A[lvr][c] /= p; B[lvr] /= p;
for (int r=0; r<m; r++) {
if ( r != lvr && fabs (A[r][ev]) > EPS ) {
double p2 = A[r][ev];
for (int c=0; c<n; c++) A[r][c] -= p2 * A[lvr][c];
B[r] -= p2 * B[lvr];
}
}
if ( fabs (C[ev]) > EPS ) {
double p2 = C[ev];
for (int c=0; c<n; c++) C[c] -= p2 * A[lvr][c];
obj -= p2 * B[lvr];
}
if (DEBUG) {
for (int c=0; c<n; c++) cout << C[c] << "\t"; cout << obj << endl;
for (int r=0; r<m; r++) {
for (int c=0; c<n; c++) cout << A[r][c] << "\t";
cout << B[r] << endl;
}
cout << endl;
}
}
return false;
}
void LU_solver ( vector <vector <double> > & A, // matrix A
vector <double>& B, // b
vector <double>& X // x
)
{
int n = A.size();
if (X.size() != n)
X.resize (n);
vector <vector <double> > L ( n, vector<double> (n) );
vector <vector <double> > U ( n, vector<double> (n) );
for (int i=0; i<n; i++)
L[i][i] = 1.0; // diagonals of L are 1's
copy ( A[0].begin(), A[0].end(), U[0].begin() );
for (int k=0; k<n-1; k++) {
for (int i=k+1; i<n; i++) { // compute the k'th column of L
double t = A[i][k];
for (int j=0; j<k; j++)
t -= ( L[i][j] * U[j][k] );
L[i][k] = t / U[k][k];
}
for (int j=k+1; j<n; j++) { // compute the (k+1)'s row of U
double t = A[k+1][j];
for (int i=0; i<k+1; i++)
t -= ( L[k+1][i] * U[i][j] );
U[k+1][j] = t;
}
}
for (int k=0; k<n; k++) {
X[k] = B[k];
for (int j=0; j<k; j++)
X[k] -= ( X[j] * L[k][j] );
}
for (int k=n-1; k>=0; k--) {
for (int j=k+1; j<n; j++)
X[k] -= ( X[j] * U[k][j] );
X[k] /= U[k][k];
}
}
int preprocess ( vector <vector <double> > & A, // constraint matrix
vector <double>& B, // right hand side
vector <double>& X // unknowns
)
{
int m = A.size (); // # of constraints
int n = A[0].size (); // # of variables
vector <bool> IsRedundant (m, false); // flags for redundant constraint
for (int r=0; r<m; r++) {
bool allZero = true;
for (int c=0; c<n; c++)
if (fabs(A[r][c]) > EPS) { allZero = false; break; }
if (allZero) {
if (fabs(B[r]) > EPS) return -1;
else IsRedundant[r] = true;
}
}
for (int i=0; i<m; i++) if (!IsRedundant[i]) {
for (int j=i+1; j<m; j++) if (!IsRedundant[j]) {
int c;
double ratio = 0.0;
for (c=0; c<n; c++) {
if ( fabs(A[i][c]) < EPS && fabs(A[j][c]) < EPS ) // both are 0
continue;
else if ( fabs(A[i][c]) < EPS && fabs(A[j][c]) > EPS || // one is 0
fabs(A[i][c]) > EPS && fabs(A[j][c]) < EPS )
break;
else { // both are nonzero
if ( fabs(ratio) < EPS )
ratio = A[i][c] / A[j][c];
else {
if ( fabs (A[i][c]/A[j][c] - ratio) > EPS )
break;
}
}
} if (c == n) {
if ( fabs(B[i]) < EPS && fabs(B[j]) < EPS ||
fabs(B[j]) > EPS && fabs (B[i]/B[j] - ratio) < EPS )
IsRedundant[j] = true;
else return -1; // inconsistency detected
}
}
}
int r;
for (int c=0; c<n; c++)
r = identity_col (A, c);
if(r==-1)
count==0;
else
count==1;
int numRedundancies = count;
if (numRedundancies > 0) {
int ir = 0; // 1 position to the right of the new A
for (int i=0; i<m; i++) {
if (!IsRedundant[i]) {
if (ir < i) { // overiding
copy (A[i].begin(), A[i].end(), A[ir].begin());
B[ir] = B[i];
}
ir++;
}
}
for (int i=0; i<numRedundancies; i++) {
A.erase (A.end()-1);
B.erase (B.end()-1);
}
}
m -= numRedundancies;
if (m >= n) { // determined or overdetermined system
vector <vector <double> > A0 (n, vector<double> (n));
vector <double> B0 (n);
for (int r=0; r<n; r++) {
copy (A[r].begin(), A[r].end(), A0[r].begin());
B0[r] = B[r];
}
LU_solver (A0, B0, X);
bool nonNegative = true;
for (int c=0; c<n; c++)
if (X[c] < 0) { nonNegative = false; break; }
if (!nonNegative)
return -1;
bool consistent = true;
for (int r=n; r<m; r++) {
double lhs = 0.0;
for (int c=0; c<n; c++)
lhs += A[r][c] * X[c];
if ( fabs (lhs - B[r]) > EPS ) { // constraint c not satisfied
consistent = false;
break;
}
}
return (consistent ? -2 : -1);
}
return numRedundancies;
}
int simplex ( const vector <vector <double> > & A, // constraint matrix
const vector <double>& B, // right hand side
const vector <double>& C, // objective vector
vector <double>& X, // unknowns
double & obj // objective value
)
{
int m = A.size(); // # of inequalities
int n = A[0].size(); // # of variables
if (!m || m != B.size() || n != C.size()) {
cout << "Wrong inputs!\n"; exit(1);
}
if (X.size() != n) X.resize(n);
fill (X.begin(), X.end(), 0);
vector <vector <double> > A0 ( m, vector<double>(n) );
vector <double> B0 (m);
for (int r=0; r<m; r++)
copy (A[r].begin(), A[r].end(), A0[r].begin() );
copy ( B.begin(), B.end(), B0.begin() );
int ret_val = preprocess (A0, B0, X);
int numRedundancies;
if (ret_val == -1) // inconsistent system
return -1;
else if (ret_val == -2) // solved
return 1;
else // need to run Simplex
numRedundancies = ret_val;
m = A0.size (); // size changes after redundancy removal
vector <bool> IsBasic (n, false); // bit flag for basic variables
vector <int> BasicVarR (m, -1); // basic variable of each row
int numBasicVar = 0;
for (int c=0; c<n; c++) {
int r = identity_col (A, c);
if (r >= 0 && BasicVarR[r] < 0) {
IsBasic[c] = true;
BasicVarR[r] = c;
numBasicVar++;
}
}
vector <vector <double> > A2 ( m, vector<double>(n) );
vector <double> B2 (m);
vector <double> C2 (n);
for (int r=0; r<m; r++)
copy ( A0[r].begin(), A0[r].end(), A2[r].begin() );
copy ( B0.begin(), B0.end(), B2.begin() );
for (int c=0; c<n; c++)
C2[c] = -C[c]; // obj. vector should be negated
obj = 0;
if (numBasicVar < m) {
int n1 = n; // Phase I need extra dummy variables
vector <vector <double> > A1 (m, vector<double>(n) );
vector <double> B1 (m);
vector <double> C1 (n, 0); // new objective vector for phase I
for (int r=0; r<m; r++)
copy ( A0[r].begin(), A0[r].end(), A1[r].begin() );
copy ( B0.begin(), B0.end(), B1.begin() ); // r.h.s. is the same
for (int i=0; i<m; i++) {
if (BasicVarR[i] < 0) {
for (int r=0; r<m; r++) {
if (r == i) A1[r].push_back (1);
else A1[r].push_back (0);
}
C1.push_back (1);
BasicVarR[i] = n1;
n1++;
}
}
C1.resize (n1, 1); // Adjust sizes of objective vector
canonicalize (A1, B1, C1, BasicVarR, obj); // convert to canonical form
bool unbounded = pivoting (A1, B1, C1, BasicVarR, obj); // pivoting
if (unbounded) {
cout << "Unbounded Phase I!" << endl;
exit (1);
} bool feasible = (fabs(obj) < EPS) ? true : false;
if (!feasible) return 0;
for (int r=0; r<m; r++) {
for (int c=0; c<n; c++)
A2[r][c] = A1[r][c];
B2[r] = B1[r];
}
}
canonicalize (A2, B2, C2, BasicVarR, obj);
bool unbounded = pivoting (A2, B2, C2, BasicVarR, obj);
for (int r=0; r<m; r++) // r.h.s. is the basic solution
X[BasicVarR[r]] = B2[r];
return ( unbounded ? -1 : 1 );
}
main()
{
int m, n;
while (1) {
cout << "How many constraints ? ";
cin >> m;
cout << "How many variables ? ";
cin >> n;
vector <vector <double> > A (m, vector<double>(n));
vector <double> B (m), C(n);
cout << "Enter the coefficients of the " << n <<" variables in the left hand side of equality constraints:\n";
for (int i=0; i<m; i++) for (int j=0; j<n; j++) cin >> A[i][j];
cout << "Enter the constants on the right side of equality constraints:\n";
for (int i=0; i<m; i++) cin >> B[i];
cout << "Enter the coefficients of the" << n
<< " variables of the objective function:\n";
for (int i=0; i<n; i++) cin >> C[i];
vector <double> X;
double obj;
cout << simplex (A, B, C, X, obj) << endl;
cout << "\nOptimal objective value = " << obj << endl;
cout << "\nOptimal solution: ";
for (int i=0; i<n; i++)
cout << X[i] << "\t";
cout << endl;
}
}