-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathCNN_SGD_devam.py
124 lines (99 loc) · 3.61 KB
/
CNN_SGD_devam.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
import torch
import torch.nn as nn
import torch.nn.functional as F
import os
from PIL import Image
import numpy as np
import pandas as pd
from torch.utils.data import TensorDataset, DataLoader
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
klasor_yolu = 'img_train/'
dosya_isimleri = [dosya for dosya in os.listdir(klasor_yolu) if dosya.endswith('.jpg')]
hedef_boyut = (106, 106)
data = []
for dosya in dosya_isimleri:
tam_yol = os.path.join(klasor_yolu, dosya)
with Image.open(tam_yol) as img:
img = img.convert('L').resize(hedef_boyut)
numpy_dizi = np.array(img)
data.append(numpy_dizi)
x_train = np.array(data)
csv_dosya_yolu = 'train_sol.csv'
csv_matrisi = pd.read_csv(csv_dosya_yolu).values
y_train = csv_matrisi[:, 1:]
print('Load ok')
class CustomCNN(nn.Module):
def __init__(self):
super(CustomCNN, self).__init__()
self.conv1 = nn.Conv2d(in_channels=1, out_channels=32, kernel_size=3, stride=1, padding=1)
self.conv2 = nn.Conv2d(in_channels=32, out_channels=64, kernel_size=3, stride=1, padding=1)
self.pool = nn.MaxPool2d(kernel_size=2, stride=2, padding=0)
self.fc1 = nn.Linear(64 * 26 * 26, 128)
self.fc2 = nn.Linear(128, 37)
def forward(self, x):
x = self.pool(F.relu(self.conv1(x)))
x = self.pool(F.relu(self.conv2(x)))
x = x.view(-1, 64 * 26 * 26) # Flatten
x = F.relu(self.fc1(x))
x = self.fc2(x)
return x
model_path = 'yuzde_00_7_CNN_SGD4.pth'
net = torch.load(model_path, map_location=device)
net.to(device)
class RMSELoss(nn.Module):
def __init__(self):
super(RMSELoss, self).__init__()
self.mse = nn.MSELoss()
def forward(self, predicted, actual):
return torch.sqrt(self.mse(predicted, actual))
criterion = RMSELoss()
x_train_tensor = torch.tensor(x_train, dtype=torch.float32)
y_train_tensor = torch.tensor(y_train, dtype=torch.long)
x_train_tensor = torch.from_numpy(x_train).float().unsqueeze(1)
train_dataset = TensorDataset(x_train_tensor, y_train_tensor)
batch_size = 32
train_loader = DataLoader(train_dataset, batch_size=batch_size, shuffle=True)
print('transfer ok, traing start')
num_epochs = 300
loss_values=[]
lr=0.00000000001
optimizer = torch.optim.SGD(net.parameters(), lr, momentum=0.1)
dur=0
for epoch in range(num_epochs):
running_loss = 0.0
for i, data in enumerate(train_loader, 0):
try:
inputs, labels = data[0].to(device), data[1].to(device)
labels=labels.float()
optimizer.zero_grad()
outputs = net(inputs)
loss = criterion(outputs, labels)
loss.backward()
optimizer.step()
epoch_loss = running_loss / len(train_loader)
loss_values.append(epoch_loss)
running_loss += loss.item()
if i % 200 ==0:
lr=lr*0.995
optimizer = torch.optim.SGD(net.parameters(), lr)
if i % 200 == 199:
print(f'[{epoch + 1}, {i + 1:5d}] loss: {running_loss / 200:.8f}, lr :{lr:.20f}')
running_loss = 0.0
except KeyboardInterrupt:
dur=1
break
if dur:
break
print('Finished Training')
torch.save(net, 'CNN_SGD_2_1.pth')
print('module saved as CNN_SGD_2_1.pth')
import pygame
import time
def play_mp3_for_duration(path, duration):
pygame.mixer.init()
pygame.mixer.music.load(path)
pygame.mixer.music.play()
time.sleep(duration)
pygame.mixer.music.stop()
mp3_file_path = 'alarm.mp3'
play_mp3_for_duration(mp3_file_path, 2)