-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathCNN_1.py
124 lines (95 loc) · 3.46 KB
/
CNN_1.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
# -*- coding: utf-8 -*-
"""
Created on Sat Jan 20 20:56:19 2024
@author: burak
"""
import torch
import torch.nn as nn
import torch.nn.functional as F
import os
from PIL import Image
import numpy as np
import pandas as pd
from torch.utils.data import TensorDataset, DataLoader
klasor_yolu = 'img_train/'
dosya_isimleri = [dosya for dosya in os.listdir(klasor_yolu) if dosya.endswith('.jpg')]
hedef_boyut = (106, 106)
data = []
for dosya in dosya_isimleri:
tam_yol = os.path.join(klasor_yolu, dosya)
with Image.open(tam_yol) as img:
img = img.convert('L').resize(hedef_boyut)
numpy_dizi = np.array(img)
data.append(numpy_dizi)
x_train = np.array(data)
csv_dosya_yolu = 'train_sol.csv'
csv_matrisi = pd.read_csv(csv_dosya_yolu).values
y_train = csv_matrisi[:, 1:]
print('Load ok')
class CustomCNN(nn.Module):
def __init__(self):
super(CustomCNN, self).__init__()
self.conv1 = nn.Conv2d(in_channels=1, out_channels=32, kernel_size=3, stride=1, padding=1)
self.conv2 = nn.Conv2d(in_channels=32, out_channels=64, kernel_size=3, stride=1, padding=1)
self.pool = nn.MaxPool2d(kernel_size=2, stride=2, padding=0)
self.fc1 = nn.Linear(64 * 26 * 26, 128)
self.fc2 = nn.Linear(128, 37)
def forward(self, x):
x = self.pool(F.relu(self.conv1(x)))
x = self.pool(F.relu(self.conv2(x)))
x = x.view(-1, 64 * 26 * 26) # Flatten
x = F.relu(self.fc1(x))
x = self.fc2(x)
return x
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
net = CustomCNN().to(device)
class RMSELoss(nn.Module):
def __init__(self):
super(RMSELoss, self).__init__()
self.mse = nn.MSELoss()
def forward(self, predicted, actual):
return torch.sqrt(self.mse(predicted, actual))
criterion = RMSELoss()
optimizer = torch.optim.SGD(net.parameters(), lr=0.01, momentum=0.9)
x_train_tensor = torch.tensor(x_train, dtype=torch.float32)
y_train_tensor = torch.tensor(y_train, dtype=torch.long)
x_train_tensor = torch.from_numpy(x_train).float().unsqueeze(1)
train_dataset = TensorDataset(x_train_tensor, y_train_tensor)
batch_size = 32
train_loader = DataLoader(train_dataset, batch_size=batch_size, shuffle=False)
print('transfer ok, traing start')
num_epochs = 100
loss_values=[]
lr=0.01
for epoch in range(num_epochs):
running_loss = 0.0
for i, data in enumerate(train_loader, 0):
inputs, labels = data[0].to(device), data[1].to(device)
labels=labels.float()
optimizer.zero_grad()
outputs = net(inputs)
loss = criterion(outputs, labels)
loss.backward()
optimizer.step()
epoch_loss = running_loss / len(train_loader)
loss_values.append(epoch_loss)
running_loss += loss.item()
if i % 200 ==0:
lr=lr*0.995
optimizer = torch.optim.SGD(net.parameters(), lr, momentum=0.9)
if i % 200 == 199: # print every 200 mini-batches
print(f'[{epoch + 1}, {i + 1:5d}] loss: {running_loss / 200:.10f}, lr :{lr:.5f}')
running_loss = 0.0
print('Finished Training')
torch.save(net, 'CNN_SGD.pth')
print('module saved as CNN_SGD.pth')
import pygame
import time
def play_mp3_for_duration(path, duration):
pygame.mixer.init()
pygame.mixer.music.load(path)
pygame.mixer.music.play()
time.sleep(duration)
pygame.mixer.music.stop()
mp3_file_path = 'alarm.mp3'
play_mp3_for_duration(mp3_file_path, 2)