Phi 3.5 Model: microsoft/Phi-3.5-MoE-instruct
The Phi 3.5 MoE model is a 16x3.8B parameter decoder-only text-to-text mixture of expert LLM.
- Context length of 128k tokens
- Trained on 4.9T tokens
- 16 experts (16x3.8B parameters) with 6.6B active parameters
- Expect inference performance of a 7B model
- Compute router gating logits
- From the router gating logits, select the top-2 selected experts and the associated weights
- The hidden states for each token in the sequence is computed by (if selected) applying the expert output to that token, and then weighting it.
- If multiple experts are selected for the token, then this becomes a weighted sum
- The design is flexible: 2 or 1 experts can be selected, enabling dense or sparse gating
./mistralrs-server --isq Q4K -i plain -m microsoft/Phi-3.5-MoE-instruct -a phi3.5moe
import openai
messages = []
prompt = input("Enter system prompt >>> ")
if len(prompt) > 0:
messages.append({"role": "system", "content": prompt})
while True:
prompt = input(">>> ")
messages.append({"role": "user", "content": prompt})
completion = client.chat.completions.create(
model="phi3.5moe",
messages=messages,
max_tokens=256,
frequency_penalty=1.0,
top_p=0.1,
temperature=0,
)
resp = completion.choices[0].message.content
print(resp)
messages.append({"role": "assistant", "content": resp})
from mistralrs import Runner, Which, ChatCompletionRequest, Architecture
runner = Runner(
which=Which.Plain(
model_id="microsoft/Phi-3.5-MoE-instruct",
arch=Architecture.Phi3_5MoE ,
),
)
res = runner.send_chat_completion_request(
ChatCompletionRequest(
model="mistral",
messages=[
{"role": "user", "content": "Tell me a story about the Rust type system."}
],
max_tokens=256,
presence_penalty=1.0,
top_p=0.1,
temperature=0.1,
)
)
print(res.choices[0].message.content)
print(res.usage)
You can find this example here.
use anyhow::Result;
use mistralrs::{
IsqType, PagedAttentionMetaBuilder, TextMessageRole, TextMessages, TextModelBuilder,
};
#[tokio::main]
async fn main() -> Result<()> {
let model = TextModelBuilder::new("microsoft/Phi-3.5-MoE-instruct")
.with_isq(IsqType::Q4K)
.with_logging()
.with_paged_attn(|| PagedAttentionMetaBuilder::default().build())?
.build()
.await?;
let messages = TextMessages::new()
.add_message(
TextMessageRole::System,
"You are an AI agent with a specialty in programming.",
)
.add_message(
TextMessageRole::User,
"Hello! How are you? Please write generic binary search function in Rust.",
);
let response = model.send_chat_request(messages).await?;
println!("{}", response.choices[0].message.content.as_ref().unwrap());
dbg!(
response.usage.avg_prompt_tok_per_sec,
response.usage.avg_compl_tok_per_sec
);
Ok(())
}